Characteristic features of error in high-order difference calculation of 1D Poisson equation and unlimited high-accurate calculation under multi-precision calculation
Mathematics and Computers in Simulation, Dec 1, 2021
Abstract In a previous paper based on the interpolation finite difference method, a calculation s... more Abstract In a previous paper based on the interpolation finite difference method, a calculation system was shown for calculating 1D (one-dimensional) Laplace’s equation and Poisson’s equation using high-order difference schemes. Finite difference schemes, from the usual second-order to tenth-order differences, including odd number order differences, were systematically and instantaneously derived over equally/unequally spaced grid points based on the Lagrange interpolation function. Using the direct method with the band diagonal matrix algorithm, 1D Poisson equations were numerically calculated under double precision floating arithmetic, but it became clear that high accurate calculations could not be secured in high-order differences because “digit-loss errors” caused by the finite precision of computations occurred in the calculations when using the high-order differences. The double precision calculation corresponds to 15 (significant) digit calculation. In this paper, we systematically investigate how the calculation accuracy changes by high precision calculations (30-digit, and 45-digit calculations). Under 45-digit calculation, where the digit-loss error can be almost ignored, the high-order differences enable extremely high-accurate calculations.
Uploads
Papers by Tsugio Fukuchi