Papers by Sukanya Narasimhan

Science
Ancestral signaling pathways serve critical roles in metazoan development, physiology, and immuni... more Ancestral signaling pathways serve critical roles in metazoan development, physiology, and immunity. We report an evolutionary interspecies communication pathway involving a central Ixodes scapularis tick receptor termed Dome1, which acquired a mammalian cytokine receptor motif exhibiting high affinity for interferon-gamma (IFN-γ). Host-derived IFN-γ facilitates Dome1-mediated activation of the Ixodes JAK–STAT pathway. This accelerates tick blood meal acquisition and development while upregulating antimicrobial components. The Dome1–JAK–STAT pathway, which exists in most Ixodid tick genomes, regulates the regeneration and proliferation of gut cells—including stem cells—and dictates metamorphosis through the Hedgehog and Notch–Delta networks, ultimately affecting Ixodes vectorial competence. We highlight the evolutionary dependence of I. scapularis on mammalian hosts through cross-species signaling mechanisms that dually influence arthropod immunity and development.
Archives of Clinical Microbiology, Sep 18, 2017
Ticks and Tick-borne Diseases, 2020
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Clinical Infectious Diseases, 2019
Lyme disease, caused by some Borrelia burgdorferi sensu lato, is the most common tick-borne illne... more Lyme disease, caused by some Borrelia burgdorferi sensu lato, is the most common tick-borne illness in the Northern Hemisphere and the number of cases, and geographic spread, continue to grow. Previously identified B. burgdorferi proteins, lipid immunogens, and live mutants lead the design of canonical vaccines aimed at disrupting infection in the host. Discovery of the mechanism of action of the first vaccine catalyzed the development of new strategies to control Lyme disease that bypassed direct vaccination of the human host. Thus, novel prevention concepts center on proteins produced by B. burgdorferi during tick transit and on tick proteins that mediate feeding and pathogen transmission. A burgeoning area of research is tick immunity as it can unlock mechanistic pathways that could be targeted for disruption. Studies that shed light on the mammalian immune pathways engaged during tick-transmitted B. burgdorferi infection would further development of vaccination strategies agains...

Scientific Reports, 2019
The causative agents of Lyme borreliosis, spirochetes belonging to the Borrelia burgdorferi sensu... more The causative agents of Lyme borreliosis, spirochetes belonging to the Borrelia burgdorferi sensu lato group, have developed several ways to protect themselves against killing by the host complement system. In addition, it has been shown that serum sensitive isolates are (partially) protected by the Ixodes Tick Salivary Lectin Pathway Inhibitor (TSLPI) protein; a salivary gland protein that inhibits the function of Mannose Binding Lectin (MBL). MBL is a C-type lectin that recognizes oligosaccharides on pathogens and activates the complement system via the lectin pathway. MBL deficiency has been linked to a more severe course of several infectious diseases and humans with detectable antibodies against B. burgdorferi are significantly more often MBL deficient compared to humans without antibodies against B. burgdorferi. Here we set out to investigate the role of MBL in the immune response against B. burgdorferi in more detail. We demonstrate that B. burgdorferi N40 needle-infected C57...

established the unique capacity of DNA and DNA-associated autoantigens to activate autoreactive B... more established the unique capacity of DNA and DNA-associated autoantigens to activate autoreactive B cells via sequential engagement of the B cell antigen receptor (BCR) and Toll-like receptor (TLR) 9. We demonstrate that this two-receptor paradigm can be extended to the BCR/TLR7 activation of autoreactive B cells by RNA and RNA-associated autoantigens. These data implicate TLR recognition of endogenous ligands in the response to both DNAand RNA-associated autoantigens. Importantly, the response to RNA-associated autoantigens was markedly enhanced by IFN-␣ , a cytokine strongly linked to disease progression in patients with systemic lupus erythematosus (SLE). As further evidence that TLRs play a key role in autoantibody responses in SLE, we found that autoimmune-prone mice, lacking the TLR adaptor protein MyD88, had markedly reduced chromatin, Sm, and rheumatoid factor autoantibody titers.

Frontiers in Cellular and Infection Microbiology
Ixodes scapularis is one of the predominant vectors of Borrelia burgdorferi, the agent of Lyme di... more Ixodes scapularis is one of the predominant vectors of Borrelia burgdorferi, the agent of Lyme disease in the USA. The geographic distribution of I. scapularis, endemic to the northeastern and northcentral USA, is expanding as far south as Georgia and Texas, and northwards into Canada and poses an impending public health problem. The prevalence and spread of tick-borne diseases are influenced by the interplay of multiple factors including microbiological, ecological, and environmental. Molecular studies have focused on interactions between the tick-host and pathogen/s that determine the success of pathogen acquisition by the tick and transmission to the mammalian host. In this review we draw attention to additional critical environmental factors that impact tick biology and tick-pathogen interactions. With a focus on B. burgdorferi we highlight the interplay of abiotic factors such as temperature and humidity as well as biotic factors such as environmental microbiota that ticks are ...

Microbiome
Background Ixodes scapularis is the predominant tick vector of Borrelia burgdorferi, the agent of... more Background Ixodes scapularis is the predominant tick vector of Borrelia burgdorferi, the agent of Lyme disease, in the USA. Molecular interactions between the tick and B. burgdorferi orchestrate the migration of spirochetes from the midgut to the salivary glands—critical steps that precede transmission to the vertebrate host. Over the last decade, research efforts have invoked a potential role for the tick microbiome in modulating tick-pathogen interactions. Results Using multiple strategies to perturb the microbiome composition of B. burgdorferi-infected nymphal ticks, we observe that changes in the microbiome composition do not significantly influence B. burgdorferi migration from the midgut, invasion of salivary glands, or transmission to the murine host. We also show that within 24 and 48 h of the onset of tick feeding, B. burgdorferi spirochetes are within the peritrophic matrix and epithelial cells of the midgut in preparation for exit from the midgut. Conclusions This study h...
Ticks and Tick-borne Diseases
Frontiers in Cellular and Infection Microbiology, 2022

Adiponectin-mediated pathways contribute to mammalian homeostasis; however, little is known about... more Adiponectin-mediated pathways contribute to mammalian homeostasis; however, little is known about adiponectin and adiponectin receptor signaling in arthropods. In this study, we demonstrate that Ixodes scapularis ticks have an adiponectin receptor-like protein (ISARL) but lack adiponectin, suggesting activation by alternative pathways. ISARL expression is significantly upregulated in the tick gut after Borrelia burgdorferi infection, suggesting that ISARL signaling may be co-opted by the Lyme disease agent. Consistent with this, RNA interference (RNAi)-mediated silencing of ISARL significantly reduced the B. burgdorferi burden in the tick. RNA-seq-based transcriptomics and RNAi assays demonstrate that ISARL-mediated phospholipid metabolism by phosphatidylserine synthase I is associated with B. burgdorferi survival. Furthermore, the tick complement C1q-like protein 3 interacts with ISARL, and B. burgdorferi facilitates this process. This study identifies a new tick metabolic pathway that is connected to the life cycle of the Lyme disease spirochete. Editor's evaluation This work is a superb demonstration of how B. burgdorferi hijacks the ISARL-mediated phospholipid metabolism pathway to facilitate survival inside Ixodes scapularis ticks. Unexpectedly, the authors show that B. burgdorferi upregulates the tick complement C1q-like protein 3, which interacts with ISARL, to provide the required metabolic needs for the bacterium.
Science Translational Medicine, 2021
AnIxodes scapularissaliva mRNA vaccine induces tick resistance and preventsBorrelia burgdorferiin... more AnIxodes scapularissaliva mRNA vaccine induces tick resistance and preventsBorrelia burgdorferiinfection in guinea pigs.

Scientific Reports, 2021
In Europe, Ixodes ricinus is the most important vector of human infectious diseases, most notably... more In Europe, Ixodes ricinus is the most important vector of human infectious diseases, most notably Lyme borreliosis and tick-borne encephalitis virus. Multiple non-natural hosts of I. ricinus have shown to develop immunity after repeated tick bites. Tick immunity has also been shown to impair B. burgdorferi transmission. Most interestingly, multiple tick bites reduced the likelihood of contracting Lyme borreliosis in humans. A vaccine that mimics tick immunity could therefore potentially prevent Lyme borreliosis in humans. A yeast surface display library (YSD) of nymphal I. ricinus salivary gland genes expressed at 24, 48 and 72 h into tick feeding was constructed and probed with antibodies from humans repeatedly bitten by ticks, identifying twelve immunoreactive tick salivary gland proteins (TSGPs). From these, three proteins were selected for vaccination studies. An exploratory vaccination study in cattle showed an anti-tick effect when all three antigens were combined. However, im...

Vaccine, 2020
Tick-borne diseases pose a global medical problem. As transmission of tick-borne pathogens to the... more Tick-borne diseases pose a global medical problem. As transmission of tick-borne pathogens to their hosts occurs during tick feeding, development of vaccines thwarting this process could potentially prevent transmission of multiple tick-borne pathogens. The idea of tick vaccines is based on the phenomenon of acquired tick immunity, rejection of ticks feeding on hosts which were repeatedly infested by ticks. Recently, we demonstrated that saliva of the blacklegged tick Ixodes scapularis, which is the main vector of tick-borne pathogens in northeast USA, is sufficient for induction of tick immunity in the guinea pig model and that immunity directed against tick glycoproteins is important in this phenomenon. Nevertheless, immunity elicited against individual tick salivary antigens, which have been identified and tested so far, provided only modest tick rejection. We therefore now tested fractions of tick saliva produced by liquid chromatography for their ability to induce tick immunity in the guinea pig model. Immunization with all individual fractions elicited antibodies that reacted with tick saliva, however only some fractions displayed the ability to induce robust protective tick immunity. Mass spectrometry analysis led to identification of 24 proteins present only in saliva fractions which were able to induce tick immunity, suggesting suitable candidates for development of a tick vaccine.

PloS one, 2018
To determine whether human Borrelia miyamotoi infection occurs in the far-western United States, ... more To determine whether human Borrelia miyamotoi infection occurs in the far-western United States, we tested archived sera from northwestern California residents for antibodies to this emerging relapsing fever spirochete. These residents frequently were exposed to I. pacificus ticks in a region where B. miyamotoi tick infection has been reported. We used a two-step B. miyamotoi rGlpQ assay and a B. miyamotoi whole-cell lysate (WCL) assay to detect B. miyamotoi antibody. We also employed Borrelia hermsii and Borrelia burgdorferi WCL assays to examine if these Borrelia induce cross reacting antibody to B. miyamotoi. Sera were collected from 101 residents in each of two consecutive years. The sera of 12 and 14 residents in years one and two, respectively, were B. miyamotoi rGlpQ seroreactive. Sufficient sera were available to test 15 of the 26 seropositive samples using B. miyamotoi and B. hermsii WCL assays. Two residents in year one and seven residents in year two were seroreactive to ...
Proceedings of the National Academy of Sciences, 2017
Significance The importance of arthropod microbiota in the capacity of pathogens (including malar... more Significance The importance of arthropod microbiota in the capacity of pathogens (including malaria and flaviviruses, among others) to persist in vectors and cause infection is just beginning to be appreciated. The influence of pathogens, either directly or indirectly, to manipulate vector microbiota for their own benefit, has not been described. In this study, we demonstrate that a pathogen can use an arthropod molecule to alter vector microbiota and enhance infection. We believe that this work will help others consider that pathogens are not passive microbes when they enter the arthropod vector but actively influence vector gene expression that can manipulate the local environment (in this case the microbiota) and facilitate pathogen infection of the vector.
Pediatric Infectious Disease Journal, 2016
A 5-year old Massachusetts resident developed hard tick-borne relapsing fever caused by Borrelia ... more A 5-year old Massachusetts resident developed hard tick-borne relapsing fever caused by Borrelia miyamotoi. A partially engorged Ixodes scapularis tick was removed from her scalp and identified as infected with B. miyamotoi using PCR. Two weeks later, she developed an illness compatible with B. miyamotoi infection that included fatigue and recurrent fever. The diagnosis was confirmed by B. miyamotoi seroconversion.
Trends in Parasitology, 2015
Ticks are obligate blood-feeders and serve as vectors of human and livestock pathogens worldwide.... more Ticks are obligate blood-feeders and serve as vectors of human and livestock pathogens worldwide. Defining the tick microbiome and deciphering the interactions between the tick and its symbiotic bacteria in the context of tick development and pathogen transmission, will likely reveal new insights and spawn new paradigms to control tick-borne diseases. Descriptive observations on the tick microbiome that began almost a century ago serve as forerunners to the gathering momentum to define the tick microbiome in greater detail. This review will focus on the current efforts to address the microbiomes of diverse ticks, and the evolving understanding of tick microbiomes. There is hope that these efforts will bring a holistic understanding of pathogen transmission by ticks.
Uploads
Papers by Sukanya Narasimhan