Elongated landscape features like forest edges, rivers, roads or boundaries of fields are particu... more Elongated landscape features like forest edges, rivers, roads or boundaries of fields are particularly salient landmarks for navigating animals. Here, we ask how honeybees learn such structures and how they are used during their homing flights after being released at an unexpected location (catch-and-release paradigm). The experiments were performed in two landscapes that differed with respect to their overall structure: a rather featureless landscape, and one rich in close and far distant landmarks. We tested three different forms of learning: learning during orientation flights, learning during training to a feeding site, and learning during homing flights after release at an unexpected site within the explored area. We found that bees use elongated ground structures, e.g., a field boundary separating two pastures close to the hive (Experiment 1), an irrigation channel (Experiment 2), a hedgerow along which the bees were trained (Experiment 3), a gravel road close to the hive and the feeder (Experiment 4), a path along an irrigation channel with its vegetation close to the feeder (Experiment 5) and a gravel road along which bees performed their homing flights (Experiment 6). Discrimination and generalization between the learned linear landmarks and similar ones in the test area depend on their object properties (irrigation channel, gravel road, hedgerow) and their compass orientation. We conclude that elongated ground structures are embedded into multiple landscape features indicating that memory of these linear structures is one component of bee navigation. Elongated structures interact and compete with other references. Object identification is an important part of this process. The objects are characterized not only by their appearance but also by their alignment in the compass. Their salience is highest if both components are close to what had been learned. High similarity in appearance can compensate for (partial) compass misalignment, and vice versa.
In social insects, task-related recognition plays an important role in the coordination and cohes... more In social insects, task-related recognition plays an important role in the coordination and cohesion between members of the colony. Tetragonisca angustula is an eusocial stingless bee that presents a sophisticated system of defense involving two complementary groups of guards: hovering and standing guards. We identified, quantified, and compared the cuticular compounds of worker bees captured within the nest, and bees performing tasks outside: foragers and guards. In addition to cuticular hydrocarbons (CHCs), we identified abundant di-and triterpenes. Among the CHCs, we found a mixture of n-alkanes, methyl-branched alkanes, alkenes, and alkadienes. Significant differences in the relative abundance of CHCs between behavioral groups were found. Particularly, guards present high amounts of branched alkanes relative to nest bees and foragers. Differential CHC profiles associated with behavioral groups could imply a mechanism for caste recognition. stingless bees / Tetragonisca angustula / cuticular hydrocarbons / task-related recognition
Honeybees can learn food odors inside the nest during food sharing and use this information durin... more Honeybees can learn food odors inside the nest during food sharing and use this information during flower choice, dance choice or choice of a trophallactic partner. We investigated for how long odors learned inside the hive are retained by bees of different age groups. In our study, bees retrieved food odors for up to 10-11 days. Our results suggest that olfactory information acquired by young bees while performing in-hive duties can be retrieved when performing foraging duties later in life.
Information exchange of environmental cues facilitates decision-making processes among members of... more Information exchange of environmental cues facilitates decision-making processes among members of insect societies. In honeybee foraging, it is unknown how the odor cues of a resource are relayed to inactive nest mates to enable resource exploitation at specific scented sources. It is presumed that bees need to follow the dance or to be involved in trophallaxis with a successful forager to obtain the discovered floral scent. With this in mind, we evaluated the influence of food scent relayed through inhive interactions and the subsequent food choices. Results obtained from five colonies demonstrated that bees arriving at a feeding area preferred to land at a feeder carrying the odor currently exploited by the trained forager. The bees that landed at this feeder also showed more in-hive encounters with the trained forager than the individuals that landed at the alternative scented feeder. The most frequent interactions before landing at the correct feeder were body contacts with the active forager, a behavior that involves neither dance following nor trophallaxis. In addition, a reasonable proportion of successful newcomers showed no conspicuous interactions with the active forager. Results suggest that different sources of information can be integrated inside the hive to establish an odor-rewarded association useful to direct honeybees to a feeding site. For example, simple contacts with foragers or food exchanges with non-active foragers seem to be enough to choose a feeding site that carries the same scent collected by the focal forager.
Honeybees (Apis mellifera) adjust their time and effort during foraging activity. Their metabolic... more Honeybees (Apis mellifera) adjust their time and effort during foraging activity. Their metabolic rates together with body temperature rise while gathering profitable resources. These physiological changes may result in a differential cuticular profile, which in turn may bear communicational value. We evaluated if sucrose concentration of collected food affects the cuticular chemistry of honeybees during foraging. We trained bees to artificial feeders with high (2 M) and low (0.5 M) sucrose concentrations, and captured the active foragers for surface extraction of cuticular compounds. We sampled foragers just after feeding, before taking-off towards the hive, and upon landing at the hive entrance, before entering the hive. Through gas chromatography-mass spectrometry analysis of cuticular extracts, we identified and quantified 48 compounds, including cuticular hydrocarbons (CHCs) and volatiles associated with exocrine glands. We found that higher sucrose concentrations resulted in i...
Honey bees transfer different informational components of the discovered feeding source to their ... more Honey bees transfer different informational components of the discovered feeding source to their nestmates during the waggle dance. To decode the multicomponent information of this complex behavior, dance followers have to attend to the most relevant signal elements while filtering out less relevant ones. To achieve that, dance followers should present improved abilities to acquire information compared with those bees not engaged in this behavior. Through proboscis extension response assays, sensory and cognitive abilities were tested in follower and non-follower bees. Individuals were captured within the hive, immediately after following waggle runs or a bit further from the dancer. Both behavioral categories present low and similar spontaneous odor responses (SORs). However, followers exhibit differences in responsiveness to sucrose and odor discrimination: followers showed increased gustatory responsiveness and, after olfactory differential conditioning, better memory retention than non-followers. Thus, the abilities of the dance followers related to appetitive behavior would allow them to improve the acquisition of the dance surrounding information.
Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although rep... more Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sublethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sublethal concentrations of GLY (2.5, 5 and 10 mg l : corresponding to 0.125, 0.250 and 0.500 μg per animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing traces of GLY and released from a novel site either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg l −1 GLY spent more time performing homeward flights than control bees or bees treated with lo...
En insectos sociales como la abeja Apis mellifera, una eficiente recoleccion colectiva de recurso... more En insectos sociales como la abeja Apis mellifera, una eficiente recoleccion colectiva de recursos requiere de una precisa transferencia de informacion. La ubicacion, productividad y tipo floral a explotar son esenciales para poder encontrar rapidamente el alimento descubierto. Las abejas combinan la transmision de senales acustico-vibratorias y olfativas con la transferencia de informacion quimio-sensorial para alcanzar ese objetivo. En esta Tesis se evaluo la correlacion entre las interacciones sociales que ocurren durante el reclutamiento hacia un nuevo tipo floral (nueva informacion olfativa) con las preferencias recolectoras de las abejas reclutadas. Se observo que el tipo de interaccion mas frecuente es el contacto corporal y que, incluso, no es necesario un contacto trofalactico directo (transferencia de alimento boca a boca) con la reclutadora para que las abejas reclutadas arriben a la fuente de alimento senalada, como se sugeria hasta el presente. Ademas, las abejas reclut...
Sleep plays an essential role in both neural and energetic homeostasis of animals. Honey bees (Ap... more Sleep plays an essential role in both neural and energetic homeostasis of animals. Honey bees (Apis mellifera) manifest the sleep state as a reduction in muscle tone and antennal movements, which is susceptible to physical or chemical disturbances. This social insect is one of the most important pollinators in agricultural ecosystems, being exposed to a great variety of agrochemicals, which might affect its sleep behaviour. The intake of glyphosate (GLY), the herbicide most widely used worldwide, impairs learning, gustatory responsiveness and navigation in honey bees. In general, these cognitive abilities are linked with the amount and quality of sleep. Furthermore, it has been reported that animals exposed to sleep disturbances show impairments in both metabolism and memory consolidation. Consequently, we assessed the sleep pattern of bees fed with a sugar solution containing GLY (0, 25, 50 and 100 ng) by quantifying their antennal activity during the scotophase. We found that the ...
The honeybee Apis mellifera is an important pollinator in both undisturbed and agricultural ecosy... more The honeybee Apis mellifera is an important pollinator in both undisturbed and agricultural ecosystems. Its great versatility as an experimental model makes it an excellent proxy to evaluate the environmental impact of agrochemicals using current methodologies and procedures in environmental toxicology. The increase in agrochemical use, including those that do not target insects directly, can have deleterious effects if carried out indiscriminately. This seems to be the case of the herbicide glyphosate (GLY), the most widely used agrochemical worldwide. Its presence in honey has been reported in samples obtained from different environments. Hence, to understand its current and potential risks for this pollinator it has become essential to not only study the effects on honeybee colonies located in agricultural settings, but also its effects under laboratory conditions. Subtle deleterious effects can be detected using experimental approaches. GLY negatively affects associative learnin...
Proceedings of the Royal Society B: Biological Sciences, 2008
The honeybee (Apis mellifera) waggle dance is one of the most intriguing animal communication sig... more The honeybee (Apis mellifera) waggle dance is one of the most intriguing animal communication signals. A dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers.
Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although rep... more Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sublethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sublethal concentrations of GLY (2.5, 5 and 10 mg l(-1): corresponding to 0.125, 0.250 and 0.500 μg per animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing traces of GLY and released from a novel site either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg l(-1) GLY spent more time performing homeward flights than control bees or bees treated with lower concentrations. They also performed more indirect homing flights. Moreover, the proportion of direct homeward flights performed after a second release from the same site increased in control bees but not in treated bees. These results suggest that, in honeybees, exposure to levels of GLY commonly found in agricultural settings impairs the cognitive capacities needed to retrieve and integrate spatial information for a successful return to the hive. Therefore, honeybee navigation is affected by ingesting traces of the most widely used herbicide worldwide, with potential long-term negative consequences for colony foraging success.
Cognitive experiences during the early stages of life play an important role in shaping future be... more Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions, and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe (AL). Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees' physiology, behavior, and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits.
Honeybees can learn food odors inside the nest during food sharing and use this information durin... more Honeybees can learn food odors inside the nest during food sharing and use this information during flower choice, dance choice or choice of a trophallactic partner. We investigated for how long odors learned inside the hive are retained by bees of different age groups. In our study, bees retrieved food odors for up to 10-11 days. Our results suggest that olfactory information acquired by young bees while performing in-hive duties can be retrieved when performing foraging duties later in life.
Elongated landscape features like forest edges, rivers, roads or boundaries of fields are particu... more Elongated landscape features like forest edges, rivers, roads or boundaries of fields are particularly salient landmarks for navigating animals. Here, we ask how honeybees learn such structures and how they are used during their homing flights after being released at an unexpected location (catch-and-release paradigm). The experiments were performed in two landscapes that differed with respect to their overall structure: a rather featureless landscape, and one rich in close and far distant landmarks. We tested three different forms of learning: learning during orientation flights, learning during training to a feeding site, and learning during homing flights after release at an unexpected site within the explored area. We found that bees use elongated ground structures, e.g., a field boundary separating two pastures close to the hive (Experiment 1), an irrigation channel (Experiment 2), a hedgerow along which the bees were trained (Experiment 3), a gravel road close to the hive and the feeder (Experiment 4), a path along an irrigation channel with its vegetation close to the feeder (Experiment 5) and a gravel road along which bees performed their homing flights (Experiment 6). Discrimination and generalization between the learned linear landmarks and similar ones in the test area depend on their object properties (irrigation channel, gravel road, hedgerow) and their compass orientation. We conclude that elongated ground structures are embedded into multiple landscape features indicating that memory of these linear structures is one component of bee navigation. Elongated structures interact and compete with other references. Object identification is an important part of this process. The objects are characterized not only by their appearance but also by their alignment in the compass. Their salience is highest if both components are close to what had been learned. High similarity in appearance can compensate for (partial) compass misalignment, and vice versa.
In social insects, task-related recognition plays an important role in the coordination and cohes... more In social insects, task-related recognition plays an important role in the coordination and cohesion between members of the colony. Tetragonisca angustula is an eusocial stingless bee that presents a sophisticated system of defense involving two complementary groups of guards: hovering and standing guards. We identified, quantified, and compared the cuticular compounds of worker bees captured within the nest, and bees performing tasks outside: foragers and guards. In addition to cuticular hydrocarbons (CHCs), we identified abundant di-and triterpenes. Among the CHCs, we found a mixture of n-alkanes, methyl-branched alkanes, alkenes, and alkadienes. Significant differences in the relative abundance of CHCs between behavioral groups were found. Particularly, guards present high amounts of branched alkanes relative to nest bees and foragers. Differential CHC profiles associated with behavioral groups could imply a mechanism for caste recognition. stingless bees / Tetragonisca angustula / cuticular hydrocarbons / task-related recognition
Honeybees can learn food odors inside the nest during food sharing and use this information durin... more Honeybees can learn food odors inside the nest during food sharing and use this information during flower choice, dance choice or choice of a trophallactic partner. We investigated for how long odors learned inside the hive are retained by bees of different age groups. In our study, bees retrieved food odors for up to 10-11 days. Our results suggest that olfactory information acquired by young bees while performing in-hive duties can be retrieved when performing foraging duties later in life.
Information exchange of environmental cues facilitates decision-making processes among members of... more Information exchange of environmental cues facilitates decision-making processes among members of insect societies. In honeybee foraging, it is unknown how the odor cues of a resource are relayed to inactive nest mates to enable resource exploitation at specific scented sources. It is presumed that bees need to follow the dance or to be involved in trophallaxis with a successful forager to obtain the discovered floral scent. With this in mind, we evaluated the influence of food scent relayed through inhive interactions and the subsequent food choices. Results obtained from five colonies demonstrated that bees arriving at a feeding area preferred to land at a feeder carrying the odor currently exploited by the trained forager. The bees that landed at this feeder also showed more in-hive encounters with the trained forager than the individuals that landed at the alternative scented feeder. The most frequent interactions before landing at the correct feeder were body contacts with the active forager, a behavior that involves neither dance following nor trophallaxis. In addition, a reasonable proportion of successful newcomers showed no conspicuous interactions with the active forager. Results suggest that different sources of information can be integrated inside the hive to establish an odor-rewarded association useful to direct honeybees to a feeding site. For example, simple contacts with foragers or food exchanges with non-active foragers seem to be enough to choose a feeding site that carries the same scent collected by the focal forager.
Honeybees (Apis mellifera) adjust their time and effort during foraging activity. Their metabolic... more Honeybees (Apis mellifera) adjust their time and effort during foraging activity. Their metabolic rates together with body temperature rise while gathering profitable resources. These physiological changes may result in a differential cuticular profile, which in turn may bear communicational value. We evaluated if sucrose concentration of collected food affects the cuticular chemistry of honeybees during foraging. We trained bees to artificial feeders with high (2 M) and low (0.5 M) sucrose concentrations, and captured the active foragers for surface extraction of cuticular compounds. We sampled foragers just after feeding, before taking-off towards the hive, and upon landing at the hive entrance, before entering the hive. Through gas chromatography-mass spectrometry analysis of cuticular extracts, we identified and quantified 48 compounds, including cuticular hydrocarbons (CHCs) and volatiles associated with exocrine glands. We found that higher sucrose concentrations resulted in i...
Honey bees transfer different informational components of the discovered feeding source to their ... more Honey bees transfer different informational components of the discovered feeding source to their nestmates during the waggle dance. To decode the multicomponent information of this complex behavior, dance followers have to attend to the most relevant signal elements while filtering out less relevant ones. To achieve that, dance followers should present improved abilities to acquire information compared with those bees not engaged in this behavior. Through proboscis extension response assays, sensory and cognitive abilities were tested in follower and non-follower bees. Individuals were captured within the hive, immediately after following waggle runs or a bit further from the dancer. Both behavioral categories present low and similar spontaneous odor responses (SORs). However, followers exhibit differences in responsiveness to sucrose and odor discrimination: followers showed increased gustatory responsiveness and, after olfactory differential conditioning, better memory retention than non-followers. Thus, the abilities of the dance followers related to appetitive behavior would allow them to improve the acquisition of the dance surrounding information.
Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although rep... more Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sublethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sublethal concentrations of GLY (2.5, 5 and 10 mg l : corresponding to 0.125, 0.250 and 0.500 μg per animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing traces of GLY and released from a novel site either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg l −1 GLY spent more time performing homeward flights than control bees or bees treated with lo...
En insectos sociales como la abeja Apis mellifera, una eficiente recoleccion colectiva de recurso... more En insectos sociales como la abeja Apis mellifera, una eficiente recoleccion colectiva de recursos requiere de una precisa transferencia de informacion. La ubicacion, productividad y tipo floral a explotar son esenciales para poder encontrar rapidamente el alimento descubierto. Las abejas combinan la transmision de senales acustico-vibratorias y olfativas con la transferencia de informacion quimio-sensorial para alcanzar ese objetivo. En esta Tesis se evaluo la correlacion entre las interacciones sociales que ocurren durante el reclutamiento hacia un nuevo tipo floral (nueva informacion olfativa) con las preferencias recolectoras de las abejas reclutadas. Se observo que el tipo de interaccion mas frecuente es el contacto corporal y que, incluso, no es necesario un contacto trofalactico directo (transferencia de alimento boca a boca) con la reclutadora para que las abejas reclutadas arriben a la fuente de alimento senalada, como se sugeria hasta el presente. Ademas, las abejas reclut...
Sleep plays an essential role in both neural and energetic homeostasis of animals. Honey bees (Ap... more Sleep plays an essential role in both neural and energetic homeostasis of animals. Honey bees (Apis mellifera) manifest the sleep state as a reduction in muscle tone and antennal movements, which is susceptible to physical or chemical disturbances. This social insect is one of the most important pollinators in agricultural ecosystems, being exposed to a great variety of agrochemicals, which might affect its sleep behaviour. The intake of glyphosate (GLY), the herbicide most widely used worldwide, impairs learning, gustatory responsiveness and navigation in honey bees. In general, these cognitive abilities are linked with the amount and quality of sleep. Furthermore, it has been reported that animals exposed to sleep disturbances show impairments in both metabolism and memory consolidation. Consequently, we assessed the sleep pattern of bees fed with a sugar solution containing GLY (0, 25, 50 and 100 ng) by quantifying their antennal activity during the scotophase. We found that the ...
The honeybee Apis mellifera is an important pollinator in both undisturbed and agricultural ecosy... more The honeybee Apis mellifera is an important pollinator in both undisturbed and agricultural ecosystems. Its great versatility as an experimental model makes it an excellent proxy to evaluate the environmental impact of agrochemicals using current methodologies and procedures in environmental toxicology. The increase in agrochemical use, including those that do not target insects directly, can have deleterious effects if carried out indiscriminately. This seems to be the case of the herbicide glyphosate (GLY), the most widely used agrochemical worldwide. Its presence in honey has been reported in samples obtained from different environments. Hence, to understand its current and potential risks for this pollinator it has become essential to not only study the effects on honeybee colonies located in agricultural settings, but also its effects under laboratory conditions. Subtle deleterious effects can be detected using experimental approaches. GLY negatively affects associative learnin...
Proceedings of the Royal Society B: Biological Sciences, 2008
The honeybee (Apis mellifera) waggle dance is one of the most intriguing animal communication sig... more The honeybee (Apis mellifera) waggle dance is one of the most intriguing animal communication signals. A dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers.
Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although rep... more Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sublethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sublethal concentrations of GLY (2.5, 5 and 10 mg l(-1): corresponding to 0.125, 0.250 and 0.500 μg per animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing traces of GLY and released from a novel site either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg l(-1) GLY spent more time performing homeward flights than control bees or bees treated with lower concentrations. They also performed more indirect homing flights. Moreover, the proportion of direct homeward flights performed after a second release from the same site increased in control bees but not in treated bees. These results suggest that, in honeybees, exposure to levels of GLY commonly found in agricultural settings impairs the cognitive capacities needed to retrieve and integrate spatial information for a successful return to the hive. Therefore, honeybee navigation is affected by ingesting traces of the most widely used herbicide worldwide, with potential long-term negative consequences for colony foraging success.
Cognitive experiences during the early stages of life play an important role in shaping future be... more Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions, and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe (AL). Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees' physiology, behavior, and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits.
Honeybees can learn food odors inside the nest during food sharing and use this information durin... more Honeybees can learn food odors inside the nest during food sharing and use this information during flower choice, dance choice or choice of a trophallactic partner. We investigated for how long odors learned inside the hive are retained by bees of different age groups. In our study, bees retrieved food odors for up to 10-11 days. Our results suggest that olfactory information acquired by young bees while performing in-hive duties can be retrieved when performing foraging duties later in life.
Uploads
Papers by Sol Balbuena