Papers by Silvio Cavalcanti

American journal of physiology. Heart and circulatory physiology, 2002
The objective of this study was to determine the impact of a total cavopulmonary connection on th... more The objective of this study was to determine the impact of a total cavopulmonary connection on the main hemodynamic quantities, both at rest and during exercise, when compared with normal biventricular circulation. The analysis was performed by means of a mathematical model of the cardiovascular system. The model incorporates the main parameters of systemic and pulmonary circulation, the pulsating heart, and the action of arterial and cardiopulmonary baroreflex mechanisms. Furthermore, the effect of changes in intrathoracic pressure on venous return is also incorporated. Finally, the response to moderate dynamic exercise is simulated, including the effect of a central command, local metabolic vasodilation, and the "muscle pump" mechanism. Simulations of resting conditions indicate that the action of baroreflex regulatory mechanisms alone can only partially compensate for the absence of the right heart. Cardiac output and mean systemic arterial pressure at rest show a large...

Journal of Biological Engineering, 2010
Background: Most of synthetic circuits developed so far have been designed by an ad hoc approach,... more Background: Most of synthetic circuits developed so far have been designed by an ad hoc approach, using a small number of components (i.e. LacI, TetR) and a trial and error strategy. We are at the point where an increasing number of modular, interchangeable and well-characterized components is needed to expand the construction of synthetic devices and to allow a rational approach to the design. Results: We used interchangeable modular biological parts to create a set of novel synthetic devices for controlling gene transcription, and we developed a mathematical model of the modular circuits. Model parameters were identified by experimental measurements from a subset of modular combinations. The model revealed an unexpected feature of the lactose repressor system, i.e. a residual binding affinity for the operator site by induced lactose repressor molecules. Once this residual affinity was taken into account, the model properly reproduced the experimental data from the training set. The parameters identified in the training set allowed the prediction of the behavior of networks not included in the identification procedure. Conclusions: This study provides new quantitative evidences that the use of independent and well-characterized biological parts and mathematical modeling, what is called a bottom-up approach to the construction of gene networks, can allow the design of new and different devices re-using the same modular parts.

Biocomputing 2010, 2009
Synthetic biology aims to the rational design of gene circuits with predictable behaviours. Great... more Synthetic biology aims to the rational design of gene circuits with predictable behaviours. Great efforts have been done so far to introduce in the field mathematical models that could facilitate the design of synthetic networks. Here we present a mathematical model of a synthetic gene-circuit with a negative feedback. The closed loop configuration allows the control of transcription by an inducer molecule (IPTG). Escherichia coli bacterial cells were transformed and expression of a fluorescent reporter (GFP) was measured for different inducer levels. Computer model simulations well reproduced the experimental induction data, using a single fitting parameter. Independent genetic components were used to assemble the synthetic circuit. The mathematical model here presented could be useful to predict how changes in these genetic components affect the behaviour of the synthetic circuit.

The Journal of Physical Chemistry B, 2007
The role of several fragments of the potassium channel KcsA has been examined by the Poisson-Nern... more The role of several fragments of the potassium channel KcsA has been examined by the Poisson-Nernst-Planck (PNP) theory. The efficiency of the computational method allowed comparing a large number of channel models, with different intracellular gate openings, partial atomic charges, and amino acid sequences. Perhaps counter-intuitively, the calculated ion current decreases when the mean radius of the entrance cavity increases. Widening of the vestibule, in fact, increases the volume accessible to water, which is the volume with a high dielectric constant. In turn, water screens the attractive charges of the P-loop backbone. The backbone charges of the M2 helixes instead oppose the entrance of potassium ions through a complicated mechanism that can be separated in the activity of two interfering dipoles. The conductance of the KcsA models increased when two neutral residues in M2 were mutated to glutamic acid, in agreement with experimental results (Brelidze, T. I.; Niu, X.; Magleby, K. L. PNAS 2003, 100, 9017-9022). As a general conclusion, a relation between channel conductance and potassium concentration in the intracellular cavity emerged. Although the ion transport is the result of the fine balance of a number of different effects, the experimental results can be reproduced quantitatively only on the basis of electrostatic forces, which are the only driving forces modeled by the PNP theory.

The Journal of Physical Chemistry B, 2010
The Lac repressor finds its DNA binding sequences with an association rate 2 orders of magnitude ... more The Lac repressor finds its DNA binding sequences with an association rate 2 orders of magnitude higher than what is expected for a random diffusive process. This experimental data stimulated numerous theoretical and experimental studies, which led to the facilitated diffusion model. In facilitated diffusion, the Lac repressor binds nonspecifically to DNA. This nonspecific binding is followed by an exploration of the DNA molecule in a reduced space. Single-molecule imaging confirmed that the Lac repressor may move along the DNA molecule; however, it is still under debate whether the LacI movement proceeds through sliding, with a continuous close contact between the protein and DNA, or through hopping between adjacent binding sites. We have investigated the one-dimensional sliding movement of the Lac repressor along nonspecific DNA by full-atomistic molecular dynamics simulations and free-energy calculations based on the umbrella sampling technique. The computed free-energy profile along a helical trajectory was periodic, with periodicity equal to the distance between successive nucleotides and an energy barrier between successive minima of 8.7 (0.7 kcal/mol. The results from the molecular simulations were subsequently used in a Langevin dynamics framework to estimate the diffusion coefficient of the Lac repressor sliding along nonspecific DNA. The computed diffusion coefficient is close to the lower limit of the experimental range.

Journal of Tissue Engineering and Regenerative Medicine, 2012
Much evidence in the literature demonstrates the effect of cyclic mechanical stretch in maintaini... more Much evidence in the literature demonstrates the effect of cyclic mechanical stretch in maintaining, or addressing, a muscle phenotype. Such results were obtained using several technical approaches, useful for the experimental collection of proofs of principle but probably unsuitable for application in clinical regenerative medicine. Here we aimed to design a reliable innovative bioreactor, acting as a stand-alone cell culture incubator, easy to operate and effective in addressing mesenchymal stem cells (MSCs) seeded onto a 3D bioreabsorbable scaffold, towards a muscle phenotype via the transfer of a controlled and highly-reproducible cyclic deformation. Electron microscopy, immunohistochemistry and biochemical analysis of the obtained pseudotissue constructs showed that cells 'trained' over 1 week: (a) displayed multilayer organization and invaded the 3D mesh of the scaffold; and (b) expressed typical markers of muscle cells. This effect was due only to physical stimulation of the cells, without the need of any other chemical or genetic manipulation. This device is thus proposed as a prototypal instrument to obtain pseudotissue constructs to test in cardiovascular regenerative medicine, using good manufacturing procedures.
Biophysical Journal, 2010

Biophysical Journal, 2006
The Poisson-Nernst-Planck electrodiffusion theory serves to compute charge fluxes and is here app... more The Poisson-Nernst-Planck electrodiffusion theory serves to compute charge fluxes and is here applied to the ion current through a protein channel. KcsA was selected as an example because of the abundance of experimental and theoretical data. The potassium channels MthK and KvAP were used as templates to define two open channel models for KcsA. Channel boundary surfaces and protein charge distributions were defined according to atomic radii and partial atomic charges. To establish the sensitivity of the results to these parameters, two different sets were used. Assigning the potassium diffusion coefficients equal to the value for free-diffusion in water (1.96 3 10 ÿ9 m 2 /s), the computed currents overestimated the experimental data. Ion distributions inside the channel suggest that the overestimate is not due to an excess of charge shielding. A good agreement with the experimental data was achieved by reducing the potassium diffusion coefficient inside the channel to 1.96 3 10 ÿ10 m 2 /s, a value of substantial motility but nonetheless in accord with the intuitive notion that the channel has a high affinity for the ions and therefore slows them down. These results are independent of the open channel model and the parameterization adopted for atomic radii and partial atomic charges. The method offers a reliable estimate of the channel current with low computational effort.

Biophysical Journal, 2008
The a-hemolysin toxin self-assembles in lipid bilayers to form water-filled pores. In recent year... more The a-hemolysin toxin self-assembles in lipid bilayers to form water-filled pores. In recent years, a-hemolysin has received great attention, mainly due to its possible usage as a sensing element. We measured the ion currents through single a-hemolysin channels and confirmed the presence of two different subpopulations of channels with conductance levels of 465 6 30 pS and 280 6 30 pS. Different oligomerization states could be responsible for these two conductances. In fact, a heptameric structure of the channel was revealed by x-ray crystallography, whereas atomic force microscopy revealed a hexameric structure. Due to the low resolution of atomic force microscopy the atomic details of the hexameric structure are still unknown, and are here predicted by computational methods. Several possible structures of the hexameric channel were defined, and were simulated by molecular dynamics. The conductances of these channel models were computed by a numerical method based on the Poisson-Nernst-Planck electrodiffusion theory, and the values were compared to experimental data. In this way, we identified a model of the a-hemolysin hexameric state with conductance characteristics consistent with the experimental data. Since the oligomerization state of the channel may affect its behavior as a molecular sensor, knowing the atomic structure of the hexameric state will be useful for biotechnological applications of a-hemolysin.
Uploads
Papers by Silvio Cavalcanti