International Journal for Research in Applied Science and Engineering Technology
Skin cancer detection is one of the major problems across the world. Early detection of the skin ... more Skin cancer detection is one of the major problems across the world. Early detection of the skin cancer and its diagnosis is very important for the further treatment of it. Artificial Intelligence has progressed a lot in the field of healthcare and diagnosis and hence skin cancer can also be detected using Machine Leaning and AI. In this research, we have used convolutional neural network for image processing and recognition. The models implemented are Vgg-16, mobilenet, inception-V3. The paper also reviewed different AI based skin cancer detection models. Here we have used transfer learning method to reuse a pre-trained model also a model from the scratch is also built using CNN blocks. A web app is also featured using HTML, Flask and CSS in which we just have to put the diagnosis image and it will predict the result. Hence, these pre-trained models and a new model from scratch are applied to procure the most optimal model to detect skin cancer using images and web app helps on getting the result at the user end. Thus, the methodology used in this paper if implemented will give improved results of early skin cancer detection using deep learning methods.
International Journal for Research in Applied Science and Engineering Technology
Skin cancer detection is one of the major problems across the world. Early detection of the skin ... more Skin cancer detection is one of the major problems across the world. Early detection of the skin cancer and its diagnosis is very important for the further treatment of it. Artificial Intelligence has progressed a lot in the field of healthcare and diagnosis and hence skin cancer can also be detected using Machine Leaning and AI. In this research, we have used convolutional neural network for image processing and recognition. The models implemented are Vgg-16, mobilenet, inception-V3. The paper also reviewed different AI based skin cancer detection models. Here we have used transfer learning method to reuse a pre-trained model also a model from the scratch is also built using CNN blocks. A web app is also featured using HTML, Flask and CSS in which we just have to put the diagnosis image and it will predict the result. Hence, these pre-trained models and a new model from scratch are applied to procure the most optimal model to detect skin cancer using images and web app helps on getting the result at the user end. Thus, the methodology used in this paper if implemented will give improved results of early skin cancer detection using deep learning methods.
Uploads
Papers by Shruti Talyan