Papers by Sebastián Moreno

Lecture Notes in Computer Science, 2005
Catastrophic Interference is a well known problem of Artificial Neural Networks (ANN) learning al... more Catastrophic Interference is a well known problem of Artificial Neural Networks (ANN) learning algorithms where the ANN forget useful knowledge while learning from new data. Furthermore the structure of most neural models must be chosen in advance. In this paper we introduce a hybrid algorithm called Flexible Architecture of Self Organizing Maps (FASOM) that overcomes the Catastrophic Interference and preserves the topology of Clustered data in changing environments. The model consists in K receptive fields of self organizing maps. Each Receptive Field projects high-dimensional data of the input space onto a neuron position in a low-dimensional output space grid by dynamically adapting its structure to a specific region of the input space. Furthermore the FASOM model automatically finds the number of maps and prototypes needed to successfully adapt to the data. The model has the capability of both growing its structure when novel clusters appears and gradually forgets when the data volume is reduced in its receptive fields. Finally we show the capabilities of our model with experimental results using synthetic sequential data sets and real world data.

2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, 2012
A key challenge in the social network community is the problem of network generation-that is, how... more A key challenge in the social network community is the problem of network generation-that is, how can we create synthetic networks that match characteristics traditionally found in most real world networks? Important characteristics that are present in social networks include a power law degree distribution, small diameter, and large amounts of clustering. However, most current network generators, such as the Chung Lu and Kronecker models, largely ignore the clustering present in a graph and focus on preserving other network statistics, such as the power law distribution. Models such as the exponential random graph model have a transitivity parameter that can capture clustering, but they are computationally difficult to learn, making scaling to large real world networks intractable. In this work, we propose an extension to the Chung Lu random graph model, the Transitive Chung Lu (TCL) model, which incorporates the notion transitive edges. Specifically, it combines the standard Chung Lu model with edges that are formed through transitive closure (e.g., by connecting a 'friend of a friend'). We prove TCL's expected degree distribution is equal to the degree distribution of the original input graph, while still providing the ability to capture the clustering in the network. The single parameter required by our model can be learned in seconds on graphs with millions of edges; networks can be generated in time that is linear in the number of edges. We demonstrate the performance of TCL on four real-world social networks, including an email dataset with hundreds of thousands of nodes and millions of edges, showing TCL generates graphs that match the degree distribution, clustering coefficients and hop plots of the original networks.
Uploads
Papers by Sebastián Moreno