Papers by Robert Ulanowicz

De huidige financiële crisis is niet het resultaat van een management falen of cyclische fouten m... more De huidige financiële crisis is niet het resultaat van een management falen of cyclische fouten maar van structurele problemen: in de voorbije 20 jaar hebben we meer dan 96 grote bankcrisissen gekend, en deze ineenstortingen kwamen voor onder erg verschillende reguleringssystemen en in verschillende ontwikkelingsstadia van een economie. Totnogtoe zijn enkel conventionele oplossingen toegepast -nationalisering van de probleemkredieten (zoals in het originele Paulson reddingsplan) of nationalisering van banken (zoals in Europa). Deze maatregelen verhelpen enkel de symptomen maar niet de systeemeigen oorzaak van de huidige bankcrisis. Op dezelfde manier zullen de financiële herreguleringen, die op ieders politieke agenda zullen staan, hoogstens de regelmaat van een dergelijke crisis verminderen, maar niet vermijden dat het opnieuw gebeurt. Betere oplossingen zijn dringend aan de orde, want de vorige instorting van die omvang, de Grote Depressie van de jaren '30, draaide uit op een golf van fascisme en wereldoorlog II. In deze verhandeling beschrijven we een recente conceptuele doorbraak, gebaseerd op ecosystemen in evenwicht, die aantoont dat alle complexe systemen, ook monetaire en financiële, structureel labiel worden wanneer teveel nadruk ligt op efficiëntie, ten koste van diversiteit en verbondenheid die de cruciale veerkracht verzekeren. Het punt is niet dat ecosystemen een handige metafoor zijn om economie te beschrijven. Het punt is dat economie en ecosystemen dieperliggende wetten volgen die voor alle complexe kringloopsystemen gelden, zo ook economie en ecosystemen. Het verrassende inzicht dat dit systeemperspectief brengt, is dat duurzame dynamiek op financieel gebied een diversificatie van betaalmiddelen en instituties vraagt, via het invoeren van nieuwe betaalmiddelen, speciaal ontworpen om geld meer beschikbaar te hebben in zijn primaire functie van ruilmiddel, eerder dan van spaar-of speculatiemiddel. Bovendien zijn deze middelen speciaal ontworpen om onbenutte deugden te verenigen met onvervulde noden in een gemeenschap, regio of land. Deze betaalmiddelen noemen we complementair omdat ze de conventionele, nationale munt niet vervangen maar daar parallel mee functioneren. Deze systeembenadering is beschikbaar, en alles is in gereedheid om een technische oplossing te implementeren die ervoor zorgt dat de vernietigende effecten van bancaire en/of monetaire crashes tot het verleden behoren. Een overheid kan deze strategie van grotere diversiteit en duurzaamheid in munten het best ondersteunen door gedeeltelijk, in periodes waar banken niet
Encyclopedia of Environmetrics, Jan 2013
Keywords: ecological network analysis; network environ analysis; food webs; ascendency; trophic d... more Keywords: ecological network analysis; network environ analysis; food webs; ascendency; trophic dynamics; biogeochemical cycling; systems science; ecosystems; network science

Many wetlands undergo seasonal cycles in precipitation and water depth. This environmental season... more Many wetlands undergo seasonal cycles in precipitation and water depth. This environmental seasonality is echoed in patterns of production of fish biomass, which, in turn, influence the phenology of other components of the food web, including wading birds. Human activities, such as drainage or other alterations of the hydrology, can exacerbate these natural cycles and result in detrimental stresses on fish production and the higher trophic levels dependent on this production. In this paper we model the seasonal pattern of fish production in a freshwater marsh, with special reference to the Everglades/Big Cypress region of southern Florida. The model illustrates the temporal pattern of production through the year, which can result in very high densities of fish at the end of a hydroperiod (period of flooding), as well as the importance of ponds and other deep depressions, both as refugia and sinks during dry periods. The model predicts that: (1) there is an effective threshold in the length of the hydroperiod that must be exceeded for high fish-population densities to be produced, (2) large, piscivorous fishes do not appear to have a major impact on smaller fishes in the marsh habitat, and (3) the recovery of small-fish populations in the marsh following a major drought may require up to a year. The last of these results is relevant to assessing anthropogenic impacts on marsh production, as these effects may increase the severity and frequency of droughts.

Sustainable systems as organisms?, 2005
Schr¨odinger [Schr¨odinger, E., 1944. What is Life? Cambridge University Press, Cambridge] marvel... more Schr¨odinger [Schr¨odinger, E., 1944. What is Life? Cambridge University Press, Cambridge] marvelled at how the organism is
able to use metabolic energy to maintain and even increase its organisation, which could not be understood in terms of classical
statistical thermodynamics. Ho [Ho, M.W., 1993. The Rainbow and the Worm, The Physics of Organisms, World Scientific,
Singapore; Ho, M.W., 1998a. The Rainbow and the Worm, The Physics of Organisms, 2nd (enlarged) ed., reprinted 1999,
2001, 2003 (available online from ISIS website www.i- sis.org.uk)] outlined a novel “thermodynamics of organised complexity”
based on a nested dynamical structure that enables the organism to maintain its organisation and simultaneously achieve nonequilibrium
and equilibrium energy transfer at maximum efficiency. This thermodynamic model of the organism is reminiscent
of the dynamical structure of steady state ecosystems identified by Ulanowicz [Ulanowicz, R.E., 1983. Identifying the structure
of cycling in ecosystems. Math. Biosci. 65, 210–237; Ulanowicz, R.E., 2003. Some steps towards a central theory of ecosystem
dynamics. Comput. Biol. Chem. 27, 523–530].
The healthy organism excels in maintaining its organisation and keeping away from thermodynamic equilibrium – death by
another name – and in reproducing and providing for future generations. In those respects, it is the ideal sustainable system.We
propose therefore to explore the common features between organisms and ecosystems, to see how far we can analyse sustainable
systems in agriculture, ecology and economics as organisms, and to extract indicators of the system’s health or sustainability.
We find that looking at sustainable systems as organisms provides fresh insights on sustainability, and offers diagnostic criteria
for sustainability that reflect the system’s health.
In the case of ecosystems, those diagnostic criteria of health translate into properties such as biodiversity and productivity,
the richness of cycles, the efficiency of energy use and minimum dissipation. In the case of economic systems, they translate
into space-time differentiation or organised heterogeneity, local autonomy and sufficiency at appropriate levels, reciprocity and
equality of exchange, and most of all, balancing the exploitation of natural resources – real input into the system – against the
ability of the ecosystem to regenerate itself
Uploads
Papers by Robert Ulanowicz
able to use metabolic energy to maintain and even increase its organisation, which could not be understood in terms of classical
statistical thermodynamics. Ho [Ho, M.W., 1993. The Rainbow and the Worm, The Physics of Organisms, World Scientific,
Singapore; Ho, M.W., 1998a. The Rainbow and the Worm, The Physics of Organisms, 2nd (enlarged) ed., reprinted 1999,
2001, 2003 (available online from ISIS website www.i- sis.org.uk)] outlined a novel “thermodynamics of organised complexity”
based on a nested dynamical structure that enables the organism to maintain its organisation and simultaneously achieve nonequilibrium
and equilibrium energy transfer at maximum efficiency. This thermodynamic model of the organism is reminiscent
of the dynamical structure of steady state ecosystems identified by Ulanowicz [Ulanowicz, R.E., 1983. Identifying the structure
of cycling in ecosystems. Math. Biosci. 65, 210–237; Ulanowicz, R.E., 2003. Some steps towards a central theory of ecosystem
dynamics. Comput. Biol. Chem. 27, 523–530].
The healthy organism excels in maintaining its organisation and keeping away from thermodynamic equilibrium – death by
another name – and in reproducing and providing for future generations. In those respects, it is the ideal sustainable system.We
propose therefore to explore the common features between organisms and ecosystems, to see how far we can analyse sustainable
systems in agriculture, ecology and economics as organisms, and to extract indicators of the system’s health or sustainability.
We find that looking at sustainable systems as organisms provides fresh insights on sustainability, and offers diagnostic criteria
for sustainability that reflect the system’s health.
In the case of ecosystems, those diagnostic criteria of health translate into properties such as biodiversity and productivity,
the richness of cycles, the efficiency of energy use and minimum dissipation. In the case of economic systems, they translate
into space-time differentiation or organised heterogeneity, local autonomy and sufficiency at appropriate levels, reciprocity and
equality of exchange, and most of all, balancing the exploitation of natural resources – real input into the system – against the
ability of the ecosystem to regenerate itself
able to use metabolic energy to maintain and even increase its organisation, which could not be understood in terms of classical
statistical thermodynamics. Ho [Ho, M.W., 1993. The Rainbow and the Worm, The Physics of Organisms, World Scientific,
Singapore; Ho, M.W., 1998a. The Rainbow and the Worm, The Physics of Organisms, 2nd (enlarged) ed., reprinted 1999,
2001, 2003 (available online from ISIS website www.i- sis.org.uk)] outlined a novel “thermodynamics of organised complexity”
based on a nested dynamical structure that enables the organism to maintain its organisation and simultaneously achieve nonequilibrium
and equilibrium energy transfer at maximum efficiency. This thermodynamic model of the organism is reminiscent
of the dynamical structure of steady state ecosystems identified by Ulanowicz [Ulanowicz, R.E., 1983. Identifying the structure
of cycling in ecosystems. Math. Biosci. 65, 210–237; Ulanowicz, R.E., 2003. Some steps towards a central theory of ecosystem
dynamics. Comput. Biol. Chem. 27, 523–530].
The healthy organism excels in maintaining its organisation and keeping away from thermodynamic equilibrium – death by
another name – and in reproducing and providing for future generations. In those respects, it is the ideal sustainable system.We
propose therefore to explore the common features between organisms and ecosystems, to see how far we can analyse sustainable
systems in agriculture, ecology and economics as organisms, and to extract indicators of the system’s health or sustainability.
We find that looking at sustainable systems as organisms provides fresh insights on sustainability, and offers diagnostic criteria
for sustainability that reflect the system’s health.
In the case of ecosystems, those diagnostic criteria of health translate into properties such as biodiversity and productivity,
the richness of cycles, the efficiency of energy use and minimum dissipation. In the case of economic systems, they translate
into space-time differentiation or organised heterogeneity, local autonomy and sufficiency at appropriate levels, reciprocity and
equality of exchange, and most of all, balancing the exploitation of natural resources – real input into the system – against the
ability of the ecosystem to regenerate itself