Papers by Philippa Browning

Solar Physics, Dec 9, 2015
In the present study we investigate magnetic reconnection in twisted magnetic fluxtubes with diff... more In the present study we investigate magnetic reconnection in twisted magnetic fluxtubes with different initial configurations. In all considered cases, energy release is triggered by the ideal kink instability, which is itself the result of applying footpoint rotation to an initially potential field. The main goal of this work is to establish the influence of the field topology and various thermodynamic effects on the energy release process. Specifically, we investigate convergence of the magnetic field at the loop footpoints, atmospheric stratification, as well as thermal conduction. In all cases, the application of vortical driving at the footpoints of an initally potential field leads to an internal kink instability. With the exception of the curved loop with high footpoint convergence, the global geometry of the loop change little during the simulation. Footpoint convergence, curvature and atmospheric structure clearly influences the rapidity with which a loop achieves instability as well as the size of the subsequent energy release. Footpoint convergence has a stabilising influence and thus the loop requires more energy for instability, which means that the subsequent relaxation has a larger heating effect. Large-scale curvature has the opposite result: less energy is needed for instability and so the amount of energy released from the field is reduced. Introducing a stratified atmosphere gives rise to decaying wave phenomena during the driving phase, and also results in a loop that is less stable.

Solar Physics, Oct 1, 2011
It has been proposed that the million degree temperature of the corona is due to the combined eff... more It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy state, which is modelled by relaxation theory, i.e., helicity is conserved and the ratio of current to field becomes invariant within the loop. We apply the model so that all the loops within an ensemble achieve instability followed by energyreleasing relaxation. The result is a nanoflare energy distribution. Furthermore, we produce different distributions by varying the loop aspect ratio, the nature of the path to instability taken by each loop and also the level of radial expansion that may accompany loop relaxation. The heating rate obtained is just sufficient for coronal heating. In addition, we also show that kink instability cannot be associated with a critical magnetic twist value for every point along the instability threshold.

Particle Acceleration in Fragmenting Periodic Reconnecting Current Sheets in Solar Flares
The Astrophysical Journal, 2010
Proton and electron acceleration in a fragmenting periodic current sheet (CS) is investigated, ba... more Proton and electron acceleration in a fragmenting periodic current sheet (CS) is investigated, based on the forced magnetic reconnection scenario. The aim is to understand the role of CS fragmentation in high-energy beam generation in solar flares. We combine magnetohydrodynamics and test-particle models to consider particle trajectories consistent with a time-dependent reconnection model. It is shown that accelerated particles in such a model form two distinct populations. Protons and electrons moving in open magnetic field have energy spectra that are a combination of the initial Maxwellian distribution and a power-law high-energy (E>20 keV) part. The second population contains particles moving in a closed magnetic field around O-points. These particles move predominantly along the guiding field and their energies fall within quite a narrow range between 1 MeV and 10 MeV. It is also found that particles moving in an open magnetic field have a considerably wider pitch-angle distribution.

Numerical study of nonlinear forced magnetic reconnection
Physics of Plasmas, 2001
Two-dimensional numerical simulations are used to investigate nonlinear aspects of forced magneti... more Two-dimensional numerical simulations are used to investigate nonlinear aspects of forced magnetic reconnection in a zero β highly conducting plasma. This is representative of the solar corona, where reconnection may be induced by external perturbations, e.g., at the photospheric boundary of the corona. The aim is to investigate the energy dissipation by the reconnection, which may provide a mechanism for heating the coronal plasma. The field is taken to be initially a sheared force-free equilibrium in a slab, and the effects of applying a slow deformation to the boundaries are investigated. Previous analytical studies assuming small departures from the initial equilibrium have found that a current sheet forms during an initial ideal phase of evolution, which subsequently relaxes to a reconnected equilibrium, releasing some magnetic energy. The linear theory predicts that the energy release has a singularity when the field is marginally stable to the tearing mode. The nonlinear evol...
Astronomy & Geophysics, Jun 1, 2010
EGU General Assembly Conference Abstracts, Apr 1, 2018
We investigate frequency-position structure of radio sources in solar type III and type IV bursts... more We investigate frequency-position structure of radio sources in solar type III and type IV bursts in the frequency range 30-50 MHz observed by LOFAR. These sources are produced by fundamental and harmonic plasma emission induced by propagating suprathermal electrons. Therefore, the frequency is a proxy for the electron density in the emitting plasma, and these observations can be used to estimate the plasma density in the outer corona. Our analysis indicates that coronal plasma, which produces the emission, is denser and has larger hydrodynamic scale height (i.e. it is less stratified or more uniform) compared to Newkirk's density model. We interpret this as the result of local plasma gradients induced by plasma motion in the corona above solar active regions.
Particle acceleration in helical magnetic fields in the corona
EGUGA, May 1, 2014
Effects of collisions and magnetic convergence on high energy particles in solar coronal loops
Accelerated particles and their observational signatures from confined solar flares in twisted coronal loops
HAL (Le Centre pour la Communication Scientifique Directe), Aug 2, 2015

Transport of energetic particles from reconnecting current sheets in flaring corona to the heliosphere
<p>In this study, we inverstigate the acceleration ... more <p>In this study, we inverstigate the acceleration of electrons and ions at current sheets in the flaring solar corona, and their transport into the heliosphere. We consider both generic solar flare models and specific flaring events with a data-driven approach. The aim is to answer two questions: (a) what fraction of particles accelerated in different flares can escape into the heliosphere?; and (b) what are the characteristics of the particle populations propagating towards the chromosphere and into the heliosphere?</p><p>We use a combination of data-driven 3D magnetohydrodynamics simulations with drift-kinetic particle simulations to model the evolution of the magnetic field and both thermal and non-thermal plasma and to forward-model observable characteristics. Particles are accelerated in current sheets associated with flaring reconnection. When applied to a specific flare, the model successfully predicts observed features such as the location and relative intensity of hard X-ray sources and helioseismic source locations. This confirms the viability of the approach.</p><p>Using these MHD-particle models, we will show how the magnetic field evolution and particle transport processes affect the characteristics of both energetic electrons and ions in the the inner corona and the heliosphere. The implications for interpretation of in situ measurements of energetic particles by Solar Orbiter and Parker Solar Probe will be discussed.</p><p> </p><p> </p>

Astronomy and Astrophysics, 2019
The squashing factor of a magnetic field, Q, is commonly used as an indicator of magnetic reconne... more The squashing factor of a magnetic field, Q, is commonly used as an indicator of magnetic reconnection, but few studies seek to evaluate how reliable it is in comparison with other possible reconnection indicators. By using a full, self-consistent, three-dimensional, resistive magnetohydrodynamic experiment of interacting magnetic strands constituting a coronal loop, Q and several different quantities are determined. Each is then compared with the necessary and sufficient condition for reconnection, namely the integral along a field line of the component of the electric field parallel to the magnetic field. Among the reconnection indicators explored, we find the squashing factor less successful when compared with alternatives such as Ohmic heating. In a reconnecting magnetic field devoid of null points, our work suggests that Q, being a geometric measure of the magnetic field, is not, in some configurations, a reliable indicator of the onset or a diagnostic of the location of magnet...

Experimental Astronomy, 2021
As a frequent and energetic particle accelerator, our Sun provides us with an excellent astrophys... more As a frequent and energetic particle accelerator, our Sun provides us with an excellent astrophysical laboratory for understanding the fundamental process of particle acceleration. The exploitation of radiative diagnostics from electrons has shown that acceleration operates on sub-second time scales in a complex magnetic environment, where direct electric fields, wave turbulence, and shock waves all must contribute, although precise details are severely lacking. Ions were assumed to be accelerated in a similar manner to electrons, but γ-ray imaging confirmed that emission sources are spatially separated from X-ray sources, suggesting distinctly different acceleration mechanisms. Current X-ray and γ-ray spectroscopy provides only a basic understanding of accelerated particle spectra and the total energy budgets are therefore poorly constrained. Additionally, the recent detection of relativistic ion signatures lasting many hours, without an electron counterpart, is an enigma. We propo...

Sizes of solar radio sources observed by LOFAR
<p>Decametric radio emission provides a unique insi... more <p>Decametric radio emission provides a unique insight into the physics of solar and heliospheric plasmas. Along with dynamic spectra, the spatial characteristics of the emission sources observed in solar radio bursts yield important information about the behaviour of high-energy non-thermal electrons, and the state of thermal plasma in the upper solar corona. Recently, it has been shown that sizes and locations of radio sources in the 10-100 MHz range can be used as a diagnostic tool for plasma turbulence in the upper corona and inner heliosphere. However, observations in this spectral range can be strongly affected by limited spatial resolution of the instrument, as well as by the effect of the Earth's ionosphere on radio wave propagation.</p><p>We describe a new method for correcting radio intensity maps for instrumental and ionospheric effects using observations of a known radio source at an arbitrary location in the sky. Based on this method, we derive sizes and areas of the emission sources in the solar radio bursts observed by the Low-Frequency Array (LOFAR) in 30-45 MHz range. It is shown that the sizes of sources are of the order of ten arcminutes and decrease with increasing frequency. Overall, we find that the sizes and their variation, as well as the shapes of the sources in the considered events are consistent with the theoretical models of turbulent radio-wave scattering in the solar corona  developed by Kontar et al. 2019 (Astrophys.J., 884, 122).</p>

Monthly Notices of the Royal Astronomical Society, 2020
We model the time-dependent radio emission from a disc accretion event in a T-Tauri star using 3D... more We model the time-dependent radio emission from a disc accretion event in a T-Tauri star using 3D, ideal magnetohydrodynamic simulations combined with a gyrosynchrotron emission and radiative transfer model. We predict for the first time, the multifrequency (1–1000 GHz) intensity and circular polarization from a flaring T-Tauri star. A flux tube, connecting the star with its circumstellar disc, is populated with a distribution of non-thermal electrons that is allowed to decay exponentially after a heating event in the disc and the system is allowed to evolve. The energy distribution of the electrons, as well as the non-thermal power-law index and loss rate, are varied to see their effect on the overall flux. Spectra are generated from different lines of sight, giving different views of the flux tube and disc. The peak flux typically occurs around 20–30 GHz and the radio luminosity is consistent with that observed from T-Tauri stars. For all simulations, the peak flux is found to dec...

Astronomy & Astrophysics, 2019
Aims. The goal of this study is to explore a novel method for the solar photospheric magnetic fie... more Aims. The goal of this study is to explore a novel method for the solar photospheric magnetic field diagnostics using Stokes V widths of different magnetosensitive Fe I spectral lines. Methods. We calculate Stokes I and V profiles of several Fe I lines based on a one-dimensional photospheric model VAL C using the NICOLE radiative transfer code. These profiles are used to produce calibration curves linking the intrinsic magnetic field values with the widths of blue peaks of Stokes V profiles. The obtained calibration curves are then tested using the Stokes profiles calculated for more realistic photospheric models based on magnetohydrodynamic of magneto-convection. Results. It is shown that the developed Stokes V widths method can be used with various optical and near-infrared lines. Out of six lines considered in this study, Fe I 6301 line appears to be the most effective: it is sensitive to fields over ∼200 G and does not show any saturation up to ∼2 kG. Other lines considered can ...

Proceedings of Advancing Astrophysics with the Square Kilometre Array — PoS(AASKA14), 2015
The fields of solar radiophysics and solar system radio physics, or radio heliophysics, will bene... more The fields of solar radiophysics and solar system radio physics, or radio heliophysics, will benefit immensely from an instrument with the capabilities projected for SKA. Potential applications include interplanetary scintillation (IPS), radio-burst tracking, and solar spectral radio imaging with a superior sensitivity. These will provide breakthrough new insights and results in topics of fundamental importance, such as the physics of impulsive energy releases, magnetohydrodynamic oscillations and turbulence, the dynamics of post-eruptive processes, energetic particle acceleration, the structure of the solar wind and the development and evolution of solar wind transients at distances up to and beyond the orbit of the Earth. The combination of the high spectral, time and spatial resolution and the unprecedented sensitivity of the SKA will radically advance our understanding of basic physical processes operating in solar and heliospheric plasmas and provide a solid foundation for the forecasting of space weather events.
Nuclear Fusion, 2019
The Mega Amp Spherical Tokamak (MAST) was a low aspect ratio device (R/A = 0.85/0.65 ~ 1.3) with ... more The Mega Amp Spherical Tokamak (MAST) was a low aspect ratio device (R/A = 0.85/0.65 ~ 1.3) with similar poloidal cross-section to other medium-size tokamaks. The physics programme concentrates on addressing key physics ___________________________________________________________________________
Nuclear Fusion, 2017
This document is intended for publication in the open literature. It is made available on the cle... more This document is intended for publication in the open literature. It is made available on the clear understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EUROfusion Programme Management Unit,

Astronomy & Astrophysics, 2017
Context. Heating the solar corona requires dissipation of stored magnetic energy, which may occur... more Context. Heating the solar corona requires dissipation of stored magnetic energy, which may occur in twisted magnetic fields. Recently published numerical simulations show that the ideal kink instability in a twisted magnetic thread may trigger energy release in stable twisted neighbours, and demonstrate an avalanche of heating events. Aims. We aim to construct a Taylor relaxation model for the energy release from two flux ropes and compare this with the outcomes of the simulations. We then aim to extend the model to large numbers of flux ropes, allowing the possibility of modelling a heating avalanche, and calculation of the energy release for ensembles of twisted threads with varying twist profiles. Methods. The final state is calculated by assuming a helicity-conserving relaxation to a minimum energy state. Multiple scenarios are examined, which include kink-unstable flux ropes relaxing on their own, as well as stable and unstable flux ropes merging into a single rope as a result of magnetic reconnection. We consider alternative constraints that determine the spatial extent of the final relaxed state. Results. Good agreement is found between the relaxation model and the magnetohydrodynamic simulations, both for interactions of two twisted threads and for a multi-thread avalanche. The model can predict the energy release for flux ropes of varying degrees of twist, which relax individually or which merge through reconnection into a single flux rope. It is found that the energy output of merging flux ropes is dominated by the energy of the most strongly twisted rope. Conclusions. The relaxation approach provides a very good estimate of the energy release in an ensemble of twisted threads of which one is kink-unstable.

Astronomy & Astrophysics, 2015
Context. Heating the solar corona to several million degrees requires the conversion of magnetic ... more Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread. Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread can also trigger a release of energy in a nearby thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic threads that are initially in an equilibrium state. Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this event can destabilise a nearby thread, which is a necessary requirement for starting an avalanche of energy release in magnetic threads. Conclusions. It is possible to initiate an energy release in a nearby, non-potential magnetic thread, because the energy released from one unstable magnetic thread can trigger energy release in nearby threads, provided that the nearby structures are close to marginal stability.
Uploads
Papers by Philippa Browning