B cell chronic lymphocytic leukemia (B-CLL) is a hematological malignancy considered as the most ... more B cell chronic lymphocytic leukemia (B-CLL) is a hematological malignancy considered as the most common leukemia in the Western world. The understanding of B cell differentiation is crucial for the diagnosis, prognosis, and treatment of the disease. Areas covered: In this review, B-cell ontogeny and its relation with the CLL development, in combination with the proteomic approaches which could provide a deep characterization of the disease through the characterization of the cellular signaling pathways involved in the pathological cells is described. Expert commentary: Although conventional strategies (genome sequencing, morphology assays, and immunophenotyping by flow cytometry and/or immunochemistry) have allowed the establishment of the disease stage based on different parameters, it is still necessary to utilize novel approaches (e.g., proteomics) that have the potential to simultaneously analyze thousands of molecules to improve understanding of CLL.
Advances in Experimental Medicine and Biology, 2016
The vast repertoire of immunoglobulins produced by the immune system is a consequence of the huge... more The vast repertoire of immunoglobulins produced by the immune system is a consequence of the huge amount of antigens to which we are exposed every day. The diversity of these immunoglobulins is due to different mechanisms (including VDJ recombination, somatic hypermutation, and antigen selection). Understanding how the immune system is capable of generating this diversity and which are the molecular bases of the composition of immunoglobulins are key challenges in the immunological field. During the last decades, several techniques have emerged as promising strategies to achieve these goals, but it is their combination which appears to be the fruitful solution for increasing the knowledge about human cellular and serum antibody repertoires.In this chapter, we address the diverse strategies focused on the analysis of immunoglobulin repertoires as well as the characterization of the genomic and peptide sequences. Moreover, the advantages of combining various -omics approaches are discussed through review different published studies, showing the benefits in clinical areas.
Metallomics : integrated biometal science, Jan 13, 2016
Vanadium complexes were studied during recent years and considered as a representative of a new c... more Vanadium complexes were studied during recent years and considered as a representative of a new class of non-platinum metal antitumor agents in combination with their low toxicity. However, a few challenges still remain in the discovery of new molecular targets for these novel metal-based drugs. The study of cell signaling pathways related to vanadium drugs, which is highly critical for identifying specific targets that play an important role in the antitumor activity of vanadium compounds, is scarce. This research deals with the alterations in intracellular signaling pathways promoted by an oxovanadium(iv) complex with the flavonoid chrysin [VO(chrysin)2EtOH]2 (VOChrys) in a human osteosarcoma cell line (MG-63). Herein we report for the first time the effect of [VO(chrysin)2EtOH]2 on the relative abundance of 224 proteins, which are involved in the most common intracellular pathways. Besides, full-length human recombinant (FAK and AKT1) kinases are produced using an in situ IVTT sy...
Chronic Lymphocytic Leukaemia (CLL) is a malignant B cell disorder characterized by its high hete... more Chronic Lymphocytic Leukaemia (CLL) is a malignant B cell disorder characterized by its high heterogeneity. Although genomic alterations have been broadly reported, protein studies are still in their early stages. Herein, a 224-antibody microarray has been employed to study the intracellular signalling pathways in a cohort of 14 newly diagnosed B-CLL patients as a preliminary study for further investigations. Several protein profiles were differentially identified across the cytogenetic and molecular alterations presented in the samples (deletion 13q14 and 17p13.1, trisomy 12, and NOTCH1 mutations) by a combination of affinity and MS/MS proteomics approaches. Among others altered cell signalling pathways, PKC family members were identified as down-regulated in nearly 75% of the samples tested with the antibody arrays. This might explain the rapid progression of the disease when showing p53, Rb1, or NOTCH1 mutations due to PKC-proteins family plays a critical role favouring the slowl...
Parasitic diseases have a great impact in human and animal health. The gold standard for the diag... more Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics" and platforms for parasite detection and control.
Protein biochips are the heart of many medical and bioanalytical applications. Increasing interes... more Protein biochips are the heart of many medical and bioanalytical applications. Increasing interest of protein biochip fabrication has been focused on surface activation and subsequent functionalization strategies for the immobilization of these molecules.
A comprehensive study of the molecular active landscape of human cells can be undertaken to integ... more A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of combining -omics for a comprehensive characterization of specific biological systems.
Emerging technologies for the design and generation of human antibodies require improved approach... more Emerging technologies for the design and generation of human antibodies require improved approaches enabling their screening, characterization and validation. Currently, strategies based on ELISA or western blot are used to that aim. However, the ever increasing number of novel antibodies generated would benefit from the development of new high-throughput (HT) platforms facilitating rapid antibody identification and characterization. Herein, we describe a protein chip bearing recombinant phage particles and based on a large phage antibody library. In this paper we have set forth a novel implementation which provides a powerful and simple methodology enabling the identification of single-chain variable fragments (scFv). As a proof-of-principle of this method, we tested it with recombinant antigen (human recombinant interleukin 8). Additionally, we developed a novel bioinformatics tool that serves to compare this novel strategy with traditional methods. The method described here, together with associated informatics tools, is robust, relatively fast and represents a step-forward in protocols including phage library screenings.
This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-H... more This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level for confident protein identification. The C-HPP also aims to identify new protein forms that may be caused by genetic variability, post-translational modifications, and alternative splicing. Proteogenomic data integration forms the basis of the C-HPP's activities; therefore, we have summarized some of key approaches and their roles in the project. We present new analytical technologies that improve the chemical space and lower detection limits coupled with bioinformatics tools and some publicly
Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative techno... more Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative technology for the screening of biomarkers and the study of protein-protein interactions, among others possible applications. The principal advantages are the high specificity and sensitivity that this platform offers. Moreover, compared to conventional protein microarrays, NAPPA technology avoids the necessity of protein purification, which is expensive and time-consuming, by substituting expression in situ with an in vitro transcription/translation kit. In summary, NAPPA arrays have been broadly employed in different studies improving knowledge about diseases and responses to treatments. Here, we review the principal advances and applications performed using this platform during the last years. OPEN ACCESS Microarrays 2015, 4 215
Microarrays constitute a new platform which allows the discovery and characterization of proteins... more Microarrays constitute a new platform which allows the discovery and characterization of proteins. According to different features, such as content, surface or detection system, there are many types of protein microarrays which can be applied for the identification of disease biomarkers and the characterization of protein expression patterns. However, the analysis and interpretation of the amount of information generated by microarrays remain a challenge. Further data analysis strategies are essential to obtain representative and reproducible results. Therefore, the experimental design is key, since the number of samples and dyes, among others aspects, would define the appropriate analysis method to be used. In this sense, several algorithms have been proposed so far to overcome analytical difficulties derived from fluorescence overlapping and/or background noise. Each kind of microarray is developed to fulfill a specific purpose. Therefore, the selection of appropriate analytical and data analysis strategies is crucial to achieve successful biological conclusions. In the present review, we focus on current algorithms and main strategies for data interpretation.
Over the last decade, proteomics has undergone remarkable progress thanks to the technical advanc... more Over the last decade, proteomics has undergone remarkable progress thanks to the technical advances made in the field. Improvements in the design of the protein microarrays, including more types of chemical groups for surface functionalization, new capture agents and novel detection strategies, among others, have allowed the detection of proteins in a robust, specific, sensitive, real time and high throughput manner. However, there are still problems that hinder the analysis of low abundance proteins or those present in complex samples. For this reason, the development of patents related to the features mentioned above has an important relevance. In this review, we focus on the study of recently approved patents that try to solve the existing problems. Thanks to them, it is expected that the identification of disease biomarkers can be made in a suitable and reliable way, and above all, biocompatible and environmentally friendly.
During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput... more During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput techniques with novel nanosensors. In the present review, we focus on the study of label-based and label-free detection systems, as well as nanotechnology approaches, indicating their advantages and applications in biomarker discovery. In addition, several disease biomarkers are shown in order to display the clinical importance of the improvement of sensitivity and selectivity by using nanoproteomics approaches as novel sensors.
Pathogens and parasites encode a wide spectrum of multifunctional proteins interacting to and mod... more Pathogens and parasites encode a wide spectrum of multifunctional proteins interacting to and modifying proteins in host cells. However, the current lack of a reliable method to unveil the protein-protein interactions (PPI) at the host-pathogen interface is retarding our understanding of many important pathogenic processes. Thus, the identification of proteins involved in host-pathogen interactions is important for the elucidation of virulence determinants, mechanisms of infection, host susceptibility and/or disease resistance. In this sense, proteomic technologies have experienced major improvements in recent years and protein arrays are a powerful and modern method for studying PPI in a high-throughput format. This review focuses on these techniques analyzing the state-of-the-art of proteomic technologies and their possibilities to diagnose and explore host-pathogen interactions. Major technical advancements, applications and protocol concerns are presented, so readers can appreciate the immense progress achieved and the current technical options available for studying the host-pathogen interface. Finally, future uses of this kind of array-based proteomic tools in the fight against infectious and parasitic diseases are discussed.
Approximately 18% of all human genes purported to encode proteins have not been directly evidence... more Approximately 18% of all human genes purported to encode proteins have not been directly evidenced at the protein level, according to the validation criteria established by neXtProt, and are considered as "missing" proteins. One of the goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to identify as many of these "missing" proteins as possible in human samples using mass spectrometry-based methods. To further this goal, a consortium of C-HPP teams (chromosomes 5, 10, 16 and 19) has joined forces to devise new strategies to identify…
Parasitic diseases have a great impact in human and animal health. The gold standard for the diag... more Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics " and platforms for parasite detection and control.
B cell chronic lymphocytic leukemia (B-CLL) is a hematological malignancy considered as the most ... more B cell chronic lymphocytic leukemia (B-CLL) is a hematological malignancy considered as the most common leukemia in the Western world. The understanding of B cell differentiation is crucial for the diagnosis, prognosis, and treatment of the disease. Areas covered: In this review, B-cell ontogeny and its relation with the CLL development, in combination with the proteomic approaches which could provide a deep characterization of the disease through the characterization of the cellular signaling pathways involved in the pathological cells is described. Expert commentary: Although conventional strategies (genome sequencing, morphology assays, and immunophenotyping by flow cytometry and/or immunochemistry) have allowed the establishment of the disease stage based on different parameters, it is still necessary to utilize novel approaches (e.g., proteomics) that have the potential to simultaneously analyze thousands of molecules to improve understanding of CLL.
Advances in Experimental Medicine and Biology, 2016
The vast repertoire of immunoglobulins produced by the immune system is a consequence of the huge... more The vast repertoire of immunoglobulins produced by the immune system is a consequence of the huge amount of antigens to which we are exposed every day. The diversity of these immunoglobulins is due to different mechanisms (including VDJ recombination, somatic hypermutation, and antigen selection). Understanding how the immune system is capable of generating this diversity and which are the molecular bases of the composition of immunoglobulins are key challenges in the immunological field. During the last decades, several techniques have emerged as promising strategies to achieve these goals, but it is their combination which appears to be the fruitful solution for increasing the knowledge about human cellular and serum antibody repertoires.In this chapter, we address the diverse strategies focused on the analysis of immunoglobulin repertoires as well as the characterization of the genomic and peptide sequences. Moreover, the advantages of combining various -omics approaches are discussed through review different published studies, showing the benefits in clinical areas.
Metallomics : integrated biometal science, Jan 13, 2016
Vanadium complexes were studied during recent years and considered as a representative of a new c... more Vanadium complexes were studied during recent years and considered as a representative of a new class of non-platinum metal antitumor agents in combination with their low toxicity. However, a few challenges still remain in the discovery of new molecular targets for these novel metal-based drugs. The study of cell signaling pathways related to vanadium drugs, which is highly critical for identifying specific targets that play an important role in the antitumor activity of vanadium compounds, is scarce. This research deals with the alterations in intracellular signaling pathways promoted by an oxovanadium(iv) complex with the flavonoid chrysin [VO(chrysin)2EtOH]2 (VOChrys) in a human osteosarcoma cell line (MG-63). Herein we report for the first time the effect of [VO(chrysin)2EtOH]2 on the relative abundance of 224 proteins, which are involved in the most common intracellular pathways. Besides, full-length human recombinant (FAK and AKT1) kinases are produced using an in situ IVTT sy...
Chronic Lymphocytic Leukaemia (CLL) is a malignant B cell disorder characterized by its high hete... more Chronic Lymphocytic Leukaemia (CLL) is a malignant B cell disorder characterized by its high heterogeneity. Although genomic alterations have been broadly reported, protein studies are still in their early stages. Herein, a 224-antibody microarray has been employed to study the intracellular signalling pathways in a cohort of 14 newly diagnosed B-CLL patients as a preliminary study for further investigations. Several protein profiles were differentially identified across the cytogenetic and molecular alterations presented in the samples (deletion 13q14 and 17p13.1, trisomy 12, and NOTCH1 mutations) by a combination of affinity and MS/MS proteomics approaches. Among others altered cell signalling pathways, PKC family members were identified as down-regulated in nearly 75% of the samples tested with the antibody arrays. This might explain the rapid progression of the disease when showing p53, Rb1, or NOTCH1 mutations due to PKC-proteins family plays a critical role favouring the slowl...
Parasitic diseases have a great impact in human and animal health. The gold standard for the diag... more Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics" and platforms for parasite detection and control.
Protein biochips are the heart of many medical and bioanalytical applications. Increasing interes... more Protein biochips are the heart of many medical and bioanalytical applications. Increasing interest of protein biochip fabrication has been focused on surface activation and subsequent functionalization strategies for the immobilization of these molecules.
A comprehensive study of the molecular active landscape of human cells can be undertaken to integ... more A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of combining -omics for a comprehensive characterization of specific biological systems.
Emerging technologies for the design and generation of human antibodies require improved approach... more Emerging technologies for the design and generation of human antibodies require improved approaches enabling their screening, characterization and validation. Currently, strategies based on ELISA or western blot are used to that aim. However, the ever increasing number of novel antibodies generated would benefit from the development of new high-throughput (HT) platforms facilitating rapid antibody identification and characterization. Herein, we describe a protein chip bearing recombinant phage particles and based on a large phage antibody library. In this paper we have set forth a novel implementation which provides a powerful and simple methodology enabling the identification of single-chain variable fragments (scFv). As a proof-of-principle of this method, we tested it with recombinant antigen (human recombinant interleukin 8). Additionally, we developed a novel bioinformatics tool that serves to compare this novel strategy with traditional methods. The method described here, together with associated informatics tools, is robust, relatively fast and represents a step-forward in protocols including phage library screenings.
This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-H... more This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level for confident protein identification. The C-HPP also aims to identify new protein forms that may be caused by genetic variability, post-translational modifications, and alternative splicing. Proteogenomic data integration forms the basis of the C-HPP's activities; therefore, we have summarized some of key approaches and their roles in the project. We present new analytical technologies that improve the chemical space and lower detection limits coupled with bioinformatics tools and some publicly
Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative techno... more Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative technology for the screening of biomarkers and the study of protein-protein interactions, among others possible applications. The principal advantages are the high specificity and sensitivity that this platform offers. Moreover, compared to conventional protein microarrays, NAPPA technology avoids the necessity of protein purification, which is expensive and time-consuming, by substituting expression in situ with an in vitro transcription/translation kit. In summary, NAPPA arrays have been broadly employed in different studies improving knowledge about diseases and responses to treatments. Here, we review the principal advances and applications performed using this platform during the last years. OPEN ACCESS Microarrays 2015, 4 215
Microarrays constitute a new platform which allows the discovery and characterization of proteins... more Microarrays constitute a new platform which allows the discovery and characterization of proteins. According to different features, such as content, surface or detection system, there are many types of protein microarrays which can be applied for the identification of disease biomarkers and the characterization of protein expression patterns. However, the analysis and interpretation of the amount of information generated by microarrays remain a challenge. Further data analysis strategies are essential to obtain representative and reproducible results. Therefore, the experimental design is key, since the number of samples and dyes, among others aspects, would define the appropriate analysis method to be used. In this sense, several algorithms have been proposed so far to overcome analytical difficulties derived from fluorescence overlapping and/or background noise. Each kind of microarray is developed to fulfill a specific purpose. Therefore, the selection of appropriate analytical and data analysis strategies is crucial to achieve successful biological conclusions. In the present review, we focus on current algorithms and main strategies for data interpretation.
Over the last decade, proteomics has undergone remarkable progress thanks to the technical advanc... more Over the last decade, proteomics has undergone remarkable progress thanks to the technical advances made in the field. Improvements in the design of the protein microarrays, including more types of chemical groups for surface functionalization, new capture agents and novel detection strategies, among others, have allowed the detection of proteins in a robust, specific, sensitive, real time and high throughput manner. However, there are still problems that hinder the analysis of low abundance proteins or those present in complex samples. For this reason, the development of patents related to the features mentioned above has an important relevance. In this review, we focus on the study of recently approved patents that try to solve the existing problems. Thanks to them, it is expected that the identification of disease biomarkers can be made in a suitable and reliable way, and above all, biocompatible and environmentally friendly.
During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput... more During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput techniques with novel nanosensors. In the present review, we focus on the study of label-based and label-free detection systems, as well as nanotechnology approaches, indicating their advantages and applications in biomarker discovery. In addition, several disease biomarkers are shown in order to display the clinical importance of the improvement of sensitivity and selectivity by using nanoproteomics approaches as novel sensors.
Pathogens and parasites encode a wide spectrum of multifunctional proteins interacting to and mod... more Pathogens and parasites encode a wide spectrum of multifunctional proteins interacting to and modifying proteins in host cells. However, the current lack of a reliable method to unveil the protein-protein interactions (PPI) at the host-pathogen interface is retarding our understanding of many important pathogenic processes. Thus, the identification of proteins involved in host-pathogen interactions is important for the elucidation of virulence determinants, mechanisms of infection, host susceptibility and/or disease resistance. In this sense, proteomic technologies have experienced major improvements in recent years and protein arrays are a powerful and modern method for studying PPI in a high-throughput format. This review focuses on these techniques analyzing the state-of-the-art of proteomic technologies and their possibilities to diagnose and explore host-pathogen interactions. Major technical advancements, applications and protocol concerns are presented, so readers can appreciate the immense progress achieved and the current technical options available for studying the host-pathogen interface. Finally, future uses of this kind of array-based proteomic tools in the fight against infectious and parasitic diseases are discussed.
Approximately 18% of all human genes purported to encode proteins have not been directly evidence... more Approximately 18% of all human genes purported to encode proteins have not been directly evidenced at the protein level, according to the validation criteria established by neXtProt, and are considered as "missing" proteins. One of the goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to identify as many of these "missing" proteins as possible in human samples using mass spectrometry-based methods. To further this goal, a consortium of C-HPP teams (chromosomes 5, 10, 16 and 19) has joined forces to devise new strategies to identify…
Parasitic diseases have a great impact in human and animal health. The gold standard for the diag... more Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics " and platforms for parasite detection and control.
Uploads
Papers by Paula Diez
articles by Paula Diez