Papers by Patricia Rafferty

Chronic loss of intertidal salt marsh island habitat in Jamaica Bay, New York, has led to efforts... more Chronic loss of intertidal salt marsh island habitat in Jamaica Bay, New York, has led to efforts by multi-agency partnerships to reduce loss through habitat restoration. A 2006 USACE New York District report recommended restoration of three marsh islands within the Jamaica Bay Unit of Gateway National Recreation Area: Elders Point East, Elders Point West, and Yellow Bar Hassock. USACE New York District and its local sponsor, the Port Authority of New York and New Jersey, utilized sand obtained from navigation dredging and commercial sources to (1) return approximately 16 hectares (40 acres) of bay area to full Spartina alterniflora marsh and wetland functionality, and (2) test a suite of management practices to enhance the probability of long-term success. Although the long-term success of the Elders Point East Marsh restoration project cannot be confirmed by the 2007-2012 term of post-construction monitoring, nearly all lines of evidence gathered to date indicate that the marsh is following a functional equivalency trajectory toward an endpoint comparable to reference conditions. In this case, the beneficial use of dredged material proved to be a viable option for restoration of sufficient habitat area to substantially enhance lost ecological function within the Jamaica Bay ecosystem. The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Texas Journal of Science, 2000
Surface water quality was monitored at 19 stations (2-4 week intervals) in six drainage basins of... more Surface water quality was monitored at 19 stations (2-4 week intervals) in six drainage basins of Big Thicket National Preserve of east Texas between 1996 and 1999. The parameters monitored were temperature, dissolved oxygen, pH, conductivity, current speed, light attenuation, chlorophyll a and concentrations of ammonium, ortho-phosphate, nitrate and nitrite. The best water quality (low nutrients and chlorophyll a; no hypoxia) was found in the Big Sandy Creek, Turkey Creek and Village Creek systems. Water quality in the Neches River was also generally good except for instances of moderate algal blooms. The Pine Island Bayou system, however, typically showed poor water quality. Very low current velocities and high concentrations of nutrients promoted massive spring plankton blooms (chlorophyll a in excess of 100 μg L - 1 ) and subsequent hypoxia/anoxia (dissolved oxygen less than 5 mg L - 1 ). In this system, hypoxia occurred as early as April and as late as December.

Wetlands, 2019
A goal of wetland restoration is the establishment of resilient plant communities that persist un... more A goal of wetland restoration is the establishment of resilient plant communities that persist under a variety of environmental conditions. We investigated the role of intraspecific and interspecific variation on plant community establishment in a brackish marsh that had been restored by sediment addition. Plant growth, sediment accretion, and surface elevation change in planted, not-planted, and nearby reference sites (treatments) were compared. Four perennial macrophytes were planted: Bolboschoenus robustus, Distichlis spicata, Phragmites australis, and Schoenoplectus californicus. There was 100% survival of the planted species, and all exhibited rapid vegetative spread. Intraspecific variation in stem height and cover was identified, and interspecific comparisons also indicated differences in species cover. Treatment comparisons revealed that final total cover at not-planted sites was equivalent to that at reference sites, and was highest at planted sites where P. australis becam...
Marine Chemistry, 2017
Investigation of pore water residence times and drainage velocities in salt marshes using short-l... more Investigation of pore water residence times and drainage velocities in salt marshes using short-lived radium isotopes. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Marche(2017),

Geomorphology, 2016
Shoreline erosion is often exacerbated by reduction of sediment inputs because of interference wi... more Shoreline erosion is often exacerbated by reduction of sediment inputs because of interference with sediment transport by human structures. We evaluate use of sediment dredged from a navigation channel to establish a feeder beach adjacent to a bulkhead as a solution for addressing erosion of landforms and habitats on sandy estuarine shores. The objectives are to determine how beach volume, position and shape within and downdrift of the fill area change and whether the volumes supplied by dredging match sediment losses caused by human actions. The fill was placed along a 75 m length of shoreline adjacent to a marina in Great South Bay at Fire Island, New York, USA. Changes in beach shape and volume were determined from topographic surveys conducted before and after fill and at half year intervals for 18 months. The quantity of fill was 1747 m 3. Maximum shoreline advance due to fill emplacement was 20.7 m. The maximum volume placed at any transect was 28.6 m 3 m −1 of shoreline length. Erosion of the fill occurred rapidly, with landward migration of a conspicuous scarp. The edge of the upland 18 months after the fill was placed was up to 4.6 m farther landward than prior to the fill. Movement of sediment alongshore downdrift of the fill occurred as wave-like pulses, extending the active foreshore bayward, causing accretion of the inner low tide terrace, burying saltmarsh peat outcrops on the foreshore and creating a higher and wider overwash platform over portions of the saltmarshes. Landforms downdrift of the fill area underwent successive stages including erosion (pre-nourishment), accretion, stability (with throughput of sediment) and then erosion. Beach nourishment compensates for human-induced sediment losses. The volume of sediment added from maintenance dredging can slow the rate of erosion but may not prevent long-term shoreline retreat. Restoration and maintenance of coastal landforms and habitats to specific target states at a given location is difficult, but augmenting longshore sediment inputs can allow those locations to undergo cycles of erosion and accretion, creating a variety of landforms and habitats where only erosional forms existed previously. Alternatively, nourishment could occur more frequently and in smaller volumes to reduce fluctuations in accretion-erosion cycles.
The Functioning of Ecosystems, 2012

Environmental and Experimental Botany, 2006
Intraspecific variation in stress tolerance can be an important factor influencing plant populati... more Intraspecific variation in stress tolerance can be an important factor influencing plant population structure in coastal wetland habitats. We studied clones of four species of emergent marsh macrophytes native to the northern coast of the Gulf of Mexico in Louisiana, USA, to examine variation in response to salinity and flooding stress under controlled greenhouse conditions. Clones of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected across the coastal zone of Louisiana. After vegetative propagation through at least three generations to remove acclimation to field conditions, four to six clones of each species were selected for use in the experiment. Treatments consisted of three salinity levels and two water depths, and species were assigned to either a brackish marsh (P. australis, S. californicus) or salt marsh (D. spicata, S. robustus) group for treatment application. Treatment effects on plant growth (stem number, total height, and mean height, and aboveground and belowground biomass) were examined, and physicochemical characteristics within treatments (redox potential, and interstitial water pH, salinity, temperature, and nutrients) were monitored. Clonal variation in growth was indicated in all species, and was more pronounced in D. spicata and P. australis than in S. californicus and S. robustus. Distichlis spicata and P. australis clones were assigned to relative categories of low, intermediate, and high tolerance to the imposed stressors. Similar generalizations on clonal stress tolerance were not possible for the two Schoenoplectus species. Overall species response to imposed stressors was also identified through non-statistical comparisons. Phragmites australis was more tolerant than S. californicus of increased salinity. Distichlis spicata was more tolerant of increased salinity but less tolerant of increased water depth than was S. robustus. Our results suggest that information on species and clone variations in growth and tolerance to salinity and flooding stressors can be used to select a variety of plant materials suitable for wetland restoration projects. Published by Elsevier B.V.

Ecological Applications, 2014
Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13... more Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer‐aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater t...

Ecological Applications, Jun 1, 2014
Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13... more Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.
Chronic loss of intertidal salt marsh island habitat in Jamaica Bay, New York, has led to efforts... more Chronic loss of intertidal salt marsh island habitat in Jamaica Bay, New York, has led to efforts by multi-agency partnerships to reduce loss through habitat restoration.
Watershed Management 2010, 2010

Ecological Applications, 2013
Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13... more Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.
Uploads
Papers by Patricia Rafferty