Papers by Monali Rahalkar
Bergey's Manual of Systematics of Archaea and Bacteria, 2016

Epic3international Journal of Systematic and Evolutionary Microbiology 57 Pp 1073 1080, May 1, 2007
A novel methanotroph, strain LC 2 T , was isolated from the littoral sediment of Lake Constance b... more A novel methanotroph, strain LC 2 T , was isolated from the littoral sediment of Lake Constance by enrichment in opposing gradients of methane and oxygen, followed by traditional isolation methods. Strain LC 2 T grows on methane or methanol as its sole carbon and energy source. It is a Gram-negative, non-motile, pale-pink-coloured methanotroph showing typical intracytoplasmic membranes arranged in stacks. Cells are coccoid, elliptical or rod-shaped and occur often in pairs. Strain LC 2 T grows at low oxygen concentrations and in counter-gradients of methane and oxygen. It can grow on medium free of bound nitrogen, possesses the nifH gene and fixes atmospheric nitrogen at low oxygen pressure. It grows at neutral pH and at temperatures between 10 and 30 6C. Phylogenetically, it is most closely related to the genus Methylobacter, with the type strains of Methylobacter tundripaludum and Methylobacter psychrophilus showing 94 and 93.4 % 16S rRNA gene sequence similarity, respectively. Furthermore, the pmoA gene sequence of strain LC 2 T is most closely related to pmoA gene sequences of Methylobacter strains (92 % similar to Methylobacter sp. LW 12 by deduced amino acid sequence identity). The DNA G+C content is 49.9 mol% and the major cellular fatty acid is 16 : 1v7c (60 %). Strain LC 2 T (=JCM 14076 T =DSM 18750 T ) is described as the type strain of a novel species within a new genus, Methylosoma difficile gen. nov., sp. nov.

Microbial Ecology, 2015
Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fi... more Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37Ā %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India.

Microbial Ecology, 2015
Flooded rice fields are important sources of atmospheric methane. Aerobic methanotrophs living in... more Flooded rice fields are important sources of atmospheric methane. Aerobic methanotrophs living in the vicinity of rice roots oxidize methane and act as environmental filters. Here, we present genome characteristics of a gammaproteobacterial methanotroph, isolate Sn10-6, which was isolated from a rice rhizosphere of a flooded field in India. Sn10-6 has been identified as a member of a putative novel genus and species within the family Methylococcaceae (Type I methanotrophs). The draft genome of Sn10-6 showed pathways for the following: methane oxidation, formaldehyde assimilation (RuMP), nitrogen fixation, conversion of nitrite to nitrous oxide, and other interesting genes including the ones responsible for survival in the rhizosphere environment. The majority of genes found in this genome were most similar to Methylovulum miyakonese which is a forest isolate. This draft genome provided insight into the physiology, ecology, and phylogeny of this gammaproteobacterial methanotroph.

Current science
Molecular techniques have made it increasingly clear that a large proportion of bacterial diversi... more Molecular techniques have made it increasingly clear that a large proportion of bacterial diversity in natural habitats is uncultured and therefore unexplored. We suggest and give evidence in support of a hypothesis that a large proportion, if not all, of the un-cultured diversity from a variety of aquatic and terrestrial habitats are oligophilic (oligotrophic) bacteria. Oligophilic bacteria grow only on dilute nutrient media and form small or microscopic colonies. A technique to cultivate and isolate the moderately oligophilic bacteria was developed and 90 cultures isolated. The twelve bacterial cultures characterized showed high growth yield coefficients and carbon conversion efficiencies at low substrate concentrations and progressively decreased with increasing substrate concentrations. Most of the growth yields were substantially higher than those reported in the literature and lie near the theoretical maximum. Slow growth rates and high yields indicate that they are 'K'...
Marine genomics, Jan 6, 2015
Elstera litoralis, is a Rhodospirillaceae member which was isolated from the littoral zone of Lak... more Elstera litoralis, is a Rhodospirillaceae member which was isolated from the littoral zone of Lake Constance from a stone biofilm using diatom extracellular polymeric substances (EPS) as C source. We present here the draft genome of E. litoralis which has a genome size of 3.83Mb and 61.2% G+C content. Genome analysis indicated utilization of multiple C substrates explaining its heterotrophic lifestyle as a bacterium present in natural biofilms. Further comparative genome analysis of Elstera with other members of Rhodospirillaceae would be helpful to understand the evolutionary relationships and divergence of hydrobacteria from terrabacteria.

Molecular Plant-Microbe Interactions, 2012
To meet food demands in changing climates, improved yields and stress resistance are increasingly... more To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that reside inside plants remains largely unexplored, because analysis of their specific functions is impeded by difficulties in cultivating most prokaryotes. Here, we present the first metagenomic approach to analyze an endophytic bacterial community resident inside roots of rice, one of the most important staple foods. Metagenome sequences were obtained from endophyte cells extracted from roots of field-grown plants. Putative functions were deduced from protein domains or similarity analyses of protein-encoding gene fragments, and allowed insights into the capacities of endophyte cells. This allowed us to predict traits and metabolic processes important for the endophytic lifestyle, suggesting that the endorhizosphere is an exclusive microhabitat requiring numerous adaptations. Prominent features included flagella, plant-polymer-degrading enzymes, protein secretion systems, iron acquisition and storage, quorum sensing, and detoxification of reactive oxygen species. Surprisingly, endophytes might be involved in the entire nitrogen cycle, as protein domains involved in N 2 -fixation, denitrification, and nitrification were detected and selected genes expressed. Our data suggest a high potential of the endophyte community for plant-growth promotion, improvement of plant stress resistance, biocontrol against pathogens, and bioremediation, regardless of their culturability.

INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2007
A novel methanotroph, strain LC 2 T , was isolated from the littoral sediment of Lake Constance b... more A novel methanotroph, strain LC 2 T , was isolated from the littoral sediment of Lake Constance by enrichment in opposing gradients of methane and oxygen, followed by traditional isolation methods. Strain LC 2 T grows on methane or methanol as its sole carbon and energy source. It is a Gram-negative, non-motile, pale-pink-coloured methanotroph showing typical intracytoplasmic membranes arranged in stacks. Cells are coccoid, elliptical or rod-shaped and occur often in pairs. Strain LC 2 T grows at low oxygen concentrations and in counter-gradients of methane and oxygen. It can grow on medium free of bound nitrogen, possesses the nifH gene and fixes atmospheric nitrogen at low oxygen pressure. It grows at neutral pH and at temperatures between 10 and 30 6C. Phylogenetically, it is most closely related to the genus Methylobacter, with the type strains of Methylobacter tundripaludum and Methylobacter psychrophilus showing 94 and 93.4 % 16S rRNA gene sequence similarity, respectively. Furthermore, the pmoA gene sequence of strain LC 2 T is most closely related to pmoA gene sequences of Methylobacter strains (92 % similar to Methylobacter sp. LW 12 by deduced amino acid sequence identity). The DNA G+C content is 49.9 mol% and the major cellular fatty acid is 16 : 1v7c (60 %). Strain LC 2 T (=JCM 14076 T =DSM 18750 T ) is described as the type strain of a novel species within a new genus, Methylosoma difficile gen. nov., sp. nov.

FEMS Microbiology Ecology, 2000
In sediments, methane-oxidizing bacteria live in opposing gradients of methane and oxygen. In suc... more In sediments, methane-oxidizing bacteria live in opposing gradients of methane and oxygen. In such a gradient system, the fluxes of methane and oxygen are controlled by diffusion and consumption rates, and the rate-limiting substrate is maintained at a minimum concentration at the layer of consumption. Opposing gradients of methane and oxygen were mimicked in a specific cultivation set-up in which growth of methanotrophic bacteria occurred as a sharp band at either c. 5 or 20 mm below the air-exposed end. Two new strains of methanotrophic bacteria were isolated with this system. One isolate, strain LC 1, belonged to the Methylomonas genus (type I methantroph) and contained soluble methane mono-oxygenase. Another isolate, strain LC 2, was related to the Methylobacter group (type I methantroph), as determined by 16S rRNA gene and pmoA sequence similarities. However, the partial pmoA sequence was only 86% related to cultured Methylobacter species. This strain accumulated significant amounts of formaldehyde in conventional cultivation with methane and oxygen, which may explain why it is preferentially enriched in a gradient cultivation system.
Applied and Environmental Microbiology, 2007
Analysis of pmoA and 16S rRNA gene clone libraries of methanotrophic bacteria in Lake Constance r... more Analysis of pmoA and 16S rRNA gene clone libraries of methanotrophic bacteria in Lake Constance revealed an overall dominance of type I methanotrophs in both littoral and profundal sediments. The sediments exhibited minor differences in their methanotrophic community structures. Type X methanotrophs made up a significant part of the clone libraries only in the profundal sediment and were also found only there as a prominent peak by T-RFLP analyses.
Applied and Environmental Microbiology, 2009

Applied and Environmental Microbiology, 2008
The composition of diatom-associated bacterial communities was studied with 14 different unialgal... more The composition of diatom-associated bacterial communities was studied with 14 different unialgal xenic diatom cultures isolated from freshwater epilithic biofilms of Lake Constance, Germany. A clear dominance of Alphaproteobacteria was observed, followed by Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia. Pure cultures of the diatom Cymbella microcephala, which was found to be dominant in epilithic biofilms in Lake Constance, were cocultivated with six associated bacterial strains. All these bacterial strains were able to grow in C. microcephala cultures in the absence of organic cosubstrates. Diatom growth was generally enhanced in the presence of bacteria, and polysaccharide secretion was generally increased in the presence of Proteobacteria. The monomer composition of extracellular polysaccharides of C. microcephala changed in relation to the presence of different bacteria, but the dominant monomers were less affected. Our results indicate that these changes were caused by the diatom itself rather than by specific bacterial degradation. One Bacteroidetes strain strongly influenced carbohydrate secretion by the alga via extracellular soluble compounds. Biofilms were formed only in the presence of bacteria. Phylogenetic analysis and coculture studies indicate an adaptation of Proteobacteria and Bacteroidetes to the microenvironment created by the diatom biofilm.
Uploads
Papers by Monali Rahalkar