The compression capability of several generations of video coding standards is compared by means ... more The compression capability of several generations of video coding standards is compared by means of peak signal-to-noise ratio (PSNR) and subjective testing results. A unified approach is applied to the analysis of designs, including H.262/MPEG-2 Video, H.263, MPEG-4 Visual, H.264/MPEG-4 Advanced Video Coding (AVC), and High Efficiency Video Coding (HEVC). The results of subjective tests for WVGA and HD sequences indicate that HEVC encoders can achieve equivalent subjective reproduction quality as encoders that conform to H.264/MPEG-4 AVC when using approximately 50% less bit rate on average. The HEVC design is shown to be especially effective for low bit rates, high-resolution video content, and low-delay communication applications. The measured subjective improvement somewhat exceeds the improvement measured by the PSNR metric.
The compression capability of several generations of video coding standards is compared by means ... more The compression capability of several generations of video coding standards is compared by means of peak signal-to-noise ratio (PSNR) and subjective testing results. A unified approach is applied to the analysis of designs, including H.262/MPEG-2 Video, H.263, MPEG-4 Visual, H.264/MPEG-4 Advanced Video Coding (AVC), and High Efficiency Video Coding (HEVC). The results of subjective tests for WVGA and HD sequences indicate that HEVC encoders can achieve equivalent subjective reproduction quality as encoders that conform to H.264/MPEG-4 AVC when using approximately 50% less bit rate on average. The HEVC design is shown to be especially effective for low bit rates, high-resolution video content, and low-delay communication applications. The measured subjective improvement somewhat exceeds the improvement measured by the PSNR metric.
Uploads
Papers by Moinul Islam