Papers by Meysam Ahangaran

Cellular learning automata with external input and its applications in pattern recognition
2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 2009
ABSTRACT Cellular learning automata (CLA) which has been introduced recently, is a combination of... more ABSTRACT Cellular learning automata (CLA) which has been introduced recently, is a combination of cellular automata (CA) and learning automata (LA). A CLA is a CA in which a LA is assigned to its every cell. The LA residing in each cell determines the state of the cell on basis of its action probability vector. Like CA, there is a local rule that CLA operates under it. In this paper we introduce a new model of CLA in which each cell gets an external input vector from the environment in addition to reinforcement signal, so this model can work in non-stationary environments. Then two applications of the new model on image segmentation and clustering are given, and the results show that the proposed algorithm outperforms the similar algorithms.

Cellular learning automata (CLA) is a distributed computational model which was introduced in the... more Cellular learning automata (CLA) is a distributed computational model which was introduced in the last decade. This model combines the computational power of the cellular automata with the learning power of the learning automata. Cellular learning automata is composed from a lattice of cells working together to accomplish their computational task; in which each cell is equipped with some learning automata. Wide range of applications utilizes CLA such as image processing, wireless networks, evolutionary computation and cellular networks. However, the only input to this model is a reinforcement signal and so it cannot receive another input such as the state of the environment. In this paper, we introduce a new model of CLA such that each cell receives extra information from the environment in addition to the reinforcement signal. The ability of getting an extra input from the environment increases the computational power and flexibility of the model. We have designed some new algorithms for solving famous problems in pattern recognition and machine learning such as classification, clustering and image segmentation. All of them are based on the proposed CLA. We investigated performance of these algorithms through several computer simulations. Results of the new clustering algorithm shows acceptable performance on various data sets. CLA-based classification algorithm gets average precision 84% on eight data sets in comparison with SVM, KNN and Naive Bayes with average precision 88%, 84% and 75%, respectively. Similar results are obtained for semi-supervised classification based on the proposed CLA.
Uploads
Papers by Meysam Ahangaran