Deep brain stimulation (DBS) is a reliable treatment for advanced Parkinson's disease (PD) pa... more Deep brain stimulation (DBS) is a reliable treatment for advanced Parkinson's disease (PD) patients, but a possible risk of worsening cognitive functions, although modest, may postpone or halt DBS clinical indication. In a small cohort of PD patients we have pioneered the simultaneous implantation of both the subthalamic nucleus (STN) and the pedunculopontine tegmental nucleus (PPTg). Here we describe the cognitive test performance and the corresponding cortical metabolic activity, as assessed through 18-fluorodeoxyglucose (FDG)-positron emission tomography (PET), of these six PD patients tested in PPTg-ON vs- PPTg-OFF condition. PPTg-ON condition (at low frequency, 25 Hz) induced better performance in tests exploring both executive and attentive domains, which were coupled with an increased glucose utilization in prefrontal and frontal bilateral cortical areas, including both lateral (i.e., BA 9) and more antero-medial cortices (BA 25–32). Moreover, during PPTg-ON, a surprising...
Objective: Altered processing in the basal ganglia has been described both in dystonia and Touret... more Objective: Altered processing in the basal ganglia has been described both in dystonia and Tourette's syndrome (TS). Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a standard treatment for dystonia, and has been also successfully used to alleviate tics in TS. In this study[for full text, please go to the a.m. URL]
Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vas... more Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1–induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessmen...
In neurological and neuropsychiatric disorders neuronal oscillatory activity between basal gangli... more In neurological and neuropsychiatric disorders neuronal oscillatory activity between basal ganglia and cortical circuits are altered, which may be useful as biomarker for adaptive deep brain stimulation. We investigated whether changes in the spectral power of oscillatory activity in the motor cortex (MCtx) and the sensorimotor cortex (SMCtx) of rats after injection of the dopamine (DA) receptor antagonist haloperidol (HALO) would be similar to those observed in Parkinson disease. Thereafter, we tested whether a convolutional neural network (CNN) model would identify brain signal alterations in this acute model of parkinsonism. A sixteen channel surface micro-electrocorticogram (ECoG) recording array was placed under the dura above the MCtx and SMCtx areas of one hemisphere under general anaesthesia in rats. Seven days after surgery, micro ECoG was recorded in individual free moving rats in three conditions: (1) basal activity, (2) after injection of HALO (0.5 mg/kg), and (3) with additional injection of apomorphine (APO) (1 mg/kg). Furthermore, a CNN-based classification consisting of 23,530 parameters was applied on the raw data. HALO injection decreased oscillatory theta band activity (4-8 Hz) and enhanced beta (12-30 Hz) and gamma (30-100 Hz) in MCtx and SMCtx, which was compensated after APO injection (P ¡ 0.001). Evaluation of classification performance of the CNN model provided accuracy of 92%, sensitivity of 90% and specificity of 93% on one-dimensional signals. The CNN proposed model requires a minimum of sensory hardware and may be integrated into future research on therapeutic devices for Parkinson disease, such as adaptive closed loop stimulation, thus contributing to more efficient way of treatment.
Introduction: The neurobiological mechanisms underlying the clinical effects of psychotherapy are... more Introduction: The neurobiological mechanisms underlying the clinical effects of psychotherapy are scarcely understood. In particular, the modifying effects of psychotherapy on neuronal activity are largely unknown. We here present data from an innovative experimental paradigm using the example of a patient with treatment resistant obsessive-compulsive disorder (trOCD) who underwent implantation of bilateral electrodes for deep brain stimulation (DBS). The aim of the paradigm was to examine the short term effect of metacognitive therapy (MCT) on neuronal local field potentials (LFP) before and after 5 MCT sessions. Methods: DBS electrodes were implanted bilaterally with stereotactic guidance in the bed nucleus of the stria terminalis/ internal capsule (BNST/IC). The period between implantation of the electrodes and the pacemaker was used for the experimental paradigm. DBS electrodes were externalized via extension cables, yielding the opportunity to record LFP directly from the BNST/IC. The experimental paradigm was designed as follows: (a) baseline recording of LFP from the BNST/IC, (b) application of 5 MCT sessions over 3 days, (c) post-MCT recording from the BNST/IC. The Obsessive-Compulsive Disorder-scale (OCD-S) was used to evaluate OCD symptoms. Results: OCD symptoms decreased after MCT. These reductions were accompanied by a decrease of the relative power of theta band activity, while alpha, beta, and gamma band activity was significantly increased after MCT. Further, analysis of BNST/IC LFP and frontal cortex EEG coherence showed that MCT decreased theta frequency band synchronization. Discussion: Implantation of DBS electrodes for treating psychiatric disorders offers the opportunity to gather data from neuronal circuits, and to compare effects of therapeutic interventions. Here, we demonstrate direct effects of MCT on neuronal oscillatory behavior, which may give possible cues for the neurobiological changes associated with psychotherapy.
Neuromodulation: Technology at the Neural Interface, 2020
Obsessive compulsive disorder (OCD) is a severe disabling disease, and around 10% of patients are... more Obsessive compulsive disorder (OCD) is a severe disabling disease, and around 10% of patients are considered to be treatment‐resistant (tr) in spite of guideline‐based therapy. Deep brain stimulation (DBS) has been proposed as a promising treatment for patients with trOCD. However, the optimal site for stimulation is still a matter of debate, and clinical long‐term follow‐up observations including data on quality of life are sparse. We here present six trOCD patients who underwent DBS with electrodes placed in the bed nucleus of the stria terminalis/anterior limb of the internal capsule (BNST/ALIC), followed for four to eight years after lead implantation.
The cerebellar cognitive affective syndrome may result from various cerebellar injuries. Although... more The cerebellar cognitive affective syndrome may result from various cerebellar injuries. Although it is not exactly known which anatomical structures are involved, the fastigial nucleus has been thought to play a pivotal role according to recent studies. Here we investigate whether bilateral fastigial nucleus lesions in juvenile rats affect cognitive-associative and limbic related functions in adulthood. Furthermore, potential effects on the neuronal activity in the medial prefrontal cortex (mPFC) and local field coherence with the sensorimotor cortex (SMCtx) were evaluated. The fastigial nucleus was lesioned bilaterally by thermocoagulation via stereotaxically inserted electrodes in 23-day old male Sprague Dawley rats. Naïve and sham-lesioned rats (electrodes inserted above the nucleus and no electrical current applied) served as controls. As adults, all groups were tested for cognitive-associative function, social behavior, and anxiety. Thereafter, electrophysiological recordings were obtained under urethane anesthesia. Finally, lesions and recording sites were histologically verified. Spatial learning in a radial maze test and learning in an operant learning paradigm was disturbed in rats with fastigial lesions. Furthermore, in the elevated plus maze anxiety was enhanced, whereas social behavior was not affected. Electrophysiological recordings showed enhanced local field coherence between mPFC and SMCtx across all frequency bands. Impaired cognitive and affective functions together with enhanced coherence between mPFC and SMCtx after bilateral fastigial nucleus lesions indicate that the fastigial nucleus contribute to the development of the cerebellar cognitive affective syndrome and associated motor behavior.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Deep brain stimulation (DBS) has been introduced as a treatment option for treatment-resistant ob... more Deep brain stimulation (DBS) has been introduced as a treatment option for treatment-resistant obsessive-compulsive disorder (OCD). However, the optimal stimulation target and the corresponding stimulation settings remain unclear. Furthermore, there is limited knowledge about the acute effects of DBS. In 3 patients with treatment-resistant OCD, DBS electrodes were implanted in the bed nucleus of the stria terminalis (BNST)/internal capsule (IC). On the next day, different electrode pairs (BNST only, IC only, and BNST/IC) were stimulated at different voltages (1, 2, and 3.5 V) for 5 minutes each. Afterwards, patients rated their perceived OCD symptoms and various emotional states on corresponding visual analog scales. Across locations, low voltage stimulation (1 and 2 V) was associated with reduction of OCD symptoms (i.e., anxiety and tension), in particular when the IC was stimulated. High voltage stimulation (3.5 V), in particular when BNST was involved, led to less reduction of OC...
The loss of nigral dopaminergic neurons and the resulting dopamine (DA) depletion in the striatum... more The loss of nigral dopaminergic neurons and the resulting dopamine (DA) depletion in the striatum (STR) lead to altered neuronal activity and enhanced beta activity in various regions of the basal ganglia (BG) motor loop in patients with Parkinson's disease and in rodents in the 6-hydroxydopamine (6-OHDA) lesioned rat model. Intrastriatal DA graft implantation has been shown to re-innervate the host brain and restore DA input. Here, DA cell grafts were implanted into the STR of 6-OHDA lesioned rats and the effect on neuronal activity under urethane anesthesia (1.4 g/kg, injected intraperitoneally) was tested in the entopeduncular nucleus (EPN, the equivalent to the human globus pallidus internus), the output nucleus of the BG, and the globus pallidus (GP, the equivalent to the human globus pallidus externus), a key region in the indirect pathway. In animals, which were transplanted with cells derived from the ventral mesencephalon of embryonic day 12 rat embryos into the STR, the rotational behavior induced by DA agonists in 6-OHDA lesioned rats was significantly improved. This was accompanied by alleviated EPN firing rate and reinstated patterns of neuronal activity in the GP and EPN. Analysis of oscillatory activity revealed enhanced beta activity in both regions, which was reduced after grafting. In summary these data indicate restoration of BG motor loop towards normal activity by DA graft integration.
Several findings support the concept that sensorimotor integration is disturbed in Parkinson'... more Several findings support the concept that sensorimotor integration is disturbed in Parkinson's disease (PD) and in levodopa-induced dyskinesias. In this study, we explored the neuronal firing activity of excitatory pyramidal cells and inhibitory interneurons in the forelimb region of the primary somatosensory cortex (S1FL-Ctx), along with its interaction with oscillatory activity of the primary motor cortex (MCtx) in 6-hydroxydopamine lesioned hemiparkinsonian (HP) and levodopa-primed dyskinetic (HP-LID) rats as compared to controls under urethane (1.4g/kg, i.p.) anesthesia. Further, gene expression patterns of distinct markers for inhibitory GABAergic neurons were analyzed in both cortical regions. While firing frequency and burst activity of S1FL-Ctx inhibitory interneurons were reduced in HP and HP-LID rats, measures of irregularity were enhanced in pyramidal cells. Further, enhanced coherence of distinct frequency bands of the theta/alpha, high-beta, and gamma frequency, tog...
Electrical stimulation of the primary visual cortex (V1) is an experimental approach for visual p... more Electrical stimulation of the primary visual cortex (V1) is an experimental approach for visual prostheses. We here compared the response to intracortical and epicortical stimulation of the primary visual cortex by using c-Fos immunoreactivity as a marker for neuronal activation. The primary visual cortex of male Sprague Dawley rats was unilaterally stimulated for four hours using bipolar electrodes placed either intracortically in layer IV (n=26) or epicortically (n=20). Four different current intensities with a constant pulse width of 200μs and a constant frequency of 10Hz were used, for intracortical stimulation with an intensity of 0μA (sham-stimulation), 10μA, 20μA and 40μA, and for epicortical stimulation 0μA, 400μA, 600μA and 800μA. Subsequently all animals underwent c-Fos immunostaining and c-Fos expression was assessed in layer I-VI of the primary visual cortex within 200μm and 400μm distance to the stimulation site. C-Fos expression was higher after intracortical stimulation compared to epicortical stimulation, even though ten times lower current intensities were applied. Furthermore intracortical stimulation resulted in more focal neuronal activation than epicortical stimulation. C-Fos expression was highest after intracortical stimulation with 20μA compared to all other intensities. Epicortical stimulation showed a linear increase of c-Fos expression with the highest expression at 800μA. Sham stimulation showed similar expression of c-Fos in both hemispheres. The contralateral hemisphere was not affected by intracortical or epicortical stimulation of either intensities. In summary, intracortical stimulation resulted in more focal neuronal activation with less current than epicortical stimulation. This model may be used as a simple but reliable model to evaluate electrodes for microstimulation of the primary visual cortex before testing in more complex settings.
The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after lo... more The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN "on" and "off" levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve...
Electrodes for neural stimulation and recording are used for the treatment of neurological disord... more Electrodes for neural stimulation and recording are used for the treatment of neurological disorders. Their features critically depend on impedance and interaction with brain tissue. The effect of surface modification on electrode impedance was examined in vitro and in vivo after intracranial implantation in rats. Electrodes coated by electrophoretic deposition with platinum nanoparticles (NP; <10 and 50 nm) as well as uncoated references were implanted into the rat's subthalamic nucleus. After postoperative recovery, rats were electrostimulated for 3 weeks. Impedance was measured before implantation, after recovery and then weekly during stimulation. Finally, local field potential was recorded and tissue-to-implant reaction was immunohistochemically studied. Coating with NP significantly increased electrode's impedance in vitro. Postoperatively, the impedance of all electrodes was temporarily further increased. This effect was lowest for the electrodes coated with partic...
In patients with medical-refractory schizophrenia electroconvulsive therapy (ECT), i.e., the indu... more In patients with medical-refractory schizophrenia electroconvulsive therapy (ECT), i.e., the induction of therapeutic seizures via cortical surface electrodes, is effectively used. Electroconvulsive stimulation (ECS) in rodents simulates ECT in humans and is applied to investigate the mechanisms underlying this treatment. Experimentally-induced reduced prepulse inhibition (PPI) of the acoustic startle response (ASR), i.e., the reduction of the startle response to an intense acoustic stimulus when this stimulus is shortly preceded by a weaker not-startling stimulus, serves as an endophenotype for neuropsychiatric disorders that are accompanied by disturbed sensorimotor gating, such as schizophrenia. Here we used rats selectively bred for high and low PPI to evaluate whether bifrontal cortical ECS would affect PPI. For this purpose, cortical screw electrodes were stereotactically implanted above the frontal cortex. After recovery ECS was applied for five consecutive days with stimuli of 1 ms pulse-width, 100 pulses/s, 1 s duration, ranging from 5.5 mA to 10 mA. PPI of ASR was measured one day before ECS, and on days 1, 7, and 14 after the last ECS. In rats with breeding-induced low PPI ECS increased PPI one week after stimulation. In contrast, ECS decreased PPI in rats with high PPI on the first day after stimulation. The reaction to the startle impulse was reduced by ECS without difference between groups. This work provides evidence that rats with breeding-induced high or low PPI could be used to further investigate the underlying mechanisms of ECT in neuropsychiatric disorders with disturbed sensorimotor gating like schizophrenia.
The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output n... more The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25[Formula: see text]Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25[Formula: see text]Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to...
Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015
Rats selectively bred for deficient prepulse inhibition (PPI), an operant measure of sensorimotor... more Rats selectively bred for deficient prepulse inhibition (PPI), an operant measure of sensorimotor gating in which a weak prepulse stimulus attenuates the response to a subsequent startling stimulus, may be used to study certain pathophysiological mechanisms and therapeutic strategies for neuropsychiatric disorders with abnormalities in information processing, such as schizophrenia and Tourette's syndrome (TS). Little is known about neuronal activity in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAC), which are involved in the modulation of PPI. Here, we examined neuronal activity in these structures, and also in the entopeduncular nucleus (EPN), since lesions of this region alleviate the PPI deficit. Male rats with breeding-induced high and low expression of PPI (n = 7, each) were anesthetized with urethane (1.4 mg/kg). Single-unit activity and local field potentials were recorded in the mPFC, the NAC and in the EPN. In the mPFC discharge rate, measures of irregularity and burst activity were significantly reduced in PPI low compared to PPI high rats (P b 0.05), while analysis in the NAC showed approximately inverse behavior. In the EPN no difference between groups was found. Additionally, the oscillatory theta band activity (4-8 Hz) was enhanced and the beta band (13-30 Hz) and gamma band (30-100 Hz) activity was reduced in the NAC in PPI low rats. Reduced neuronal activity in the mPFC and enhanced activity in the NAC of PPI low rats, together with altered oscillatory behavior are clearly associated with reduced PPI. PPI low rats may thus be used to study the pathophysiology and therapeutic strategies for neuropsychiatric disorders accompanied by deficient sensorimotor gating.
The retinal dopamine (DA) deficiency is an important feature of the pathogenesis in Parkinson'... more The retinal dopamine (DA) deficiency is an important feature of the pathogenesis in Parkinson's disease (PD) visual dysfunction. Systemic inhibition of complex I (rotenone) in rats has been proposed as a model of PD. In this study, we investigated whether systemic inhibition of complex I can induce impairment of DA-ergic cells in the retina, similar to the destruction of retinal cells found in PD patients. Rotenone (2.5mg/kg i.p., daily) was administered over 60 days. Neurochemically, rotenone treated rats showed a depletion of DA in the striatum and substantia nigra (SN). In addition, the number of retinal DA-ergic amacrine cells was significantly reduced in the rotenone treated animals. This study is the first one giving highlight towards a deeper understanding of systemic complex I inhibition (rotenone as an environmental toxin) and the connection between both, DA-ergic degeneration in the nigrostriatal pathway, and in the DA-ergic amacrine cells of the retina.
Journal of neural transmission (Vienna, Austria : 1996), 2014
Altered processing in the basal ganglia has been described both in dystonia and Tourette's sy... more Altered processing in the basal ganglia has been described both in dystonia and Tourette's syndrome (TS). Deep brain stimulation (DBS) of the globus pallidus internus (GPi) has become a recognized treatment for dystonia and has been used successfully to alleviate tics in TS. This study evaluates possible differences of GPi linear and nonlinear neuronal discharge characteristics between patients with dystonia and TS. Nine patients with primary dystonia and six patients with TS were studied during functional stereotactic neurosurgical operations for implantation of DBS electrodes under general anesthesia. Six patients with primary dystonia under local anesthesia served as non-anesthetized controls. Single-unit activity recordings in the GPi were obtained during routine microelectrode recording and mapping to delineate nuclear borders and to identify the sensorimotor subregions. Anesthesia profoundly decreased neuronal activity in patients with dystonia. Dystonia patients showed ma...
Deep brain stimulation (DBS) is a reliable treatment for advanced Parkinson's disease (PD) pa... more Deep brain stimulation (DBS) is a reliable treatment for advanced Parkinson's disease (PD) patients, but a possible risk of worsening cognitive functions, although modest, may postpone or halt DBS clinical indication. In a small cohort of PD patients we have pioneered the simultaneous implantation of both the subthalamic nucleus (STN) and the pedunculopontine tegmental nucleus (PPTg). Here we describe the cognitive test performance and the corresponding cortical metabolic activity, as assessed through 18-fluorodeoxyglucose (FDG)-positron emission tomography (PET), of these six PD patients tested in PPTg-ON vs- PPTg-OFF condition. PPTg-ON condition (at low frequency, 25 Hz) induced better performance in tests exploring both executive and attentive domains, which were coupled with an increased glucose utilization in prefrontal and frontal bilateral cortical areas, including both lateral (i.e., BA 9) and more antero-medial cortices (BA 25–32). Moreover, during PPTg-ON, a surprising...
Objective: Altered processing in the basal ganglia has been described both in dystonia and Touret... more Objective: Altered processing in the basal ganglia has been described both in dystonia and Tourette's syndrome (TS). Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a standard treatment for dystonia, and has been also successfully used to alleviate tics in TS. In this study[for full text, please go to the a.m. URL]
Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vas... more Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1–induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessmen...
In neurological and neuropsychiatric disorders neuronal oscillatory activity between basal gangli... more In neurological and neuropsychiatric disorders neuronal oscillatory activity between basal ganglia and cortical circuits are altered, which may be useful as biomarker for adaptive deep brain stimulation. We investigated whether changes in the spectral power of oscillatory activity in the motor cortex (MCtx) and the sensorimotor cortex (SMCtx) of rats after injection of the dopamine (DA) receptor antagonist haloperidol (HALO) would be similar to those observed in Parkinson disease. Thereafter, we tested whether a convolutional neural network (CNN) model would identify brain signal alterations in this acute model of parkinsonism. A sixteen channel surface micro-electrocorticogram (ECoG) recording array was placed under the dura above the MCtx and SMCtx areas of one hemisphere under general anaesthesia in rats. Seven days after surgery, micro ECoG was recorded in individual free moving rats in three conditions: (1) basal activity, (2) after injection of HALO (0.5 mg/kg), and (3) with additional injection of apomorphine (APO) (1 mg/kg). Furthermore, a CNN-based classification consisting of 23,530 parameters was applied on the raw data. HALO injection decreased oscillatory theta band activity (4-8 Hz) and enhanced beta (12-30 Hz) and gamma (30-100 Hz) in MCtx and SMCtx, which was compensated after APO injection (P ¡ 0.001). Evaluation of classification performance of the CNN model provided accuracy of 92%, sensitivity of 90% and specificity of 93% on one-dimensional signals. The CNN proposed model requires a minimum of sensory hardware and may be integrated into future research on therapeutic devices for Parkinson disease, such as adaptive closed loop stimulation, thus contributing to more efficient way of treatment.
Introduction: The neurobiological mechanisms underlying the clinical effects of psychotherapy are... more Introduction: The neurobiological mechanisms underlying the clinical effects of psychotherapy are scarcely understood. In particular, the modifying effects of psychotherapy on neuronal activity are largely unknown. We here present data from an innovative experimental paradigm using the example of a patient with treatment resistant obsessive-compulsive disorder (trOCD) who underwent implantation of bilateral electrodes for deep brain stimulation (DBS). The aim of the paradigm was to examine the short term effect of metacognitive therapy (MCT) on neuronal local field potentials (LFP) before and after 5 MCT sessions. Methods: DBS electrodes were implanted bilaterally with stereotactic guidance in the bed nucleus of the stria terminalis/ internal capsule (BNST/IC). The period between implantation of the electrodes and the pacemaker was used for the experimental paradigm. DBS electrodes were externalized via extension cables, yielding the opportunity to record LFP directly from the BNST/IC. The experimental paradigm was designed as follows: (a) baseline recording of LFP from the BNST/IC, (b) application of 5 MCT sessions over 3 days, (c) post-MCT recording from the BNST/IC. The Obsessive-Compulsive Disorder-scale (OCD-S) was used to evaluate OCD symptoms. Results: OCD symptoms decreased after MCT. These reductions were accompanied by a decrease of the relative power of theta band activity, while alpha, beta, and gamma band activity was significantly increased after MCT. Further, analysis of BNST/IC LFP and frontal cortex EEG coherence showed that MCT decreased theta frequency band synchronization. Discussion: Implantation of DBS electrodes for treating psychiatric disorders offers the opportunity to gather data from neuronal circuits, and to compare effects of therapeutic interventions. Here, we demonstrate direct effects of MCT on neuronal oscillatory behavior, which may give possible cues for the neurobiological changes associated with psychotherapy.
Neuromodulation: Technology at the Neural Interface, 2020
Obsessive compulsive disorder (OCD) is a severe disabling disease, and around 10% of patients are... more Obsessive compulsive disorder (OCD) is a severe disabling disease, and around 10% of patients are considered to be treatment‐resistant (tr) in spite of guideline‐based therapy. Deep brain stimulation (DBS) has been proposed as a promising treatment for patients with trOCD. However, the optimal site for stimulation is still a matter of debate, and clinical long‐term follow‐up observations including data on quality of life are sparse. We here present six trOCD patients who underwent DBS with electrodes placed in the bed nucleus of the stria terminalis/anterior limb of the internal capsule (BNST/ALIC), followed for four to eight years after lead implantation.
The cerebellar cognitive affective syndrome may result from various cerebellar injuries. Although... more The cerebellar cognitive affective syndrome may result from various cerebellar injuries. Although it is not exactly known which anatomical structures are involved, the fastigial nucleus has been thought to play a pivotal role according to recent studies. Here we investigate whether bilateral fastigial nucleus lesions in juvenile rats affect cognitive-associative and limbic related functions in adulthood. Furthermore, potential effects on the neuronal activity in the medial prefrontal cortex (mPFC) and local field coherence with the sensorimotor cortex (SMCtx) were evaluated. The fastigial nucleus was lesioned bilaterally by thermocoagulation via stereotaxically inserted electrodes in 23-day old male Sprague Dawley rats. Naïve and sham-lesioned rats (electrodes inserted above the nucleus and no electrical current applied) served as controls. As adults, all groups were tested for cognitive-associative function, social behavior, and anxiety. Thereafter, electrophysiological recordings were obtained under urethane anesthesia. Finally, lesions and recording sites were histologically verified. Spatial learning in a radial maze test and learning in an operant learning paradigm was disturbed in rats with fastigial lesions. Furthermore, in the elevated plus maze anxiety was enhanced, whereas social behavior was not affected. Electrophysiological recordings showed enhanced local field coherence between mPFC and SMCtx across all frequency bands. Impaired cognitive and affective functions together with enhanced coherence between mPFC and SMCtx after bilateral fastigial nucleus lesions indicate that the fastigial nucleus contribute to the development of the cerebellar cognitive affective syndrome and associated motor behavior.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Deep brain stimulation (DBS) has been introduced as a treatment option for treatment-resistant ob... more Deep brain stimulation (DBS) has been introduced as a treatment option for treatment-resistant obsessive-compulsive disorder (OCD). However, the optimal stimulation target and the corresponding stimulation settings remain unclear. Furthermore, there is limited knowledge about the acute effects of DBS. In 3 patients with treatment-resistant OCD, DBS electrodes were implanted in the bed nucleus of the stria terminalis (BNST)/internal capsule (IC). On the next day, different electrode pairs (BNST only, IC only, and BNST/IC) were stimulated at different voltages (1, 2, and 3.5 V) for 5 minutes each. Afterwards, patients rated their perceived OCD symptoms and various emotional states on corresponding visual analog scales. Across locations, low voltage stimulation (1 and 2 V) was associated with reduction of OCD symptoms (i.e., anxiety and tension), in particular when the IC was stimulated. High voltage stimulation (3.5 V), in particular when BNST was involved, led to less reduction of OC...
The loss of nigral dopaminergic neurons and the resulting dopamine (DA) depletion in the striatum... more The loss of nigral dopaminergic neurons and the resulting dopamine (DA) depletion in the striatum (STR) lead to altered neuronal activity and enhanced beta activity in various regions of the basal ganglia (BG) motor loop in patients with Parkinson's disease and in rodents in the 6-hydroxydopamine (6-OHDA) lesioned rat model. Intrastriatal DA graft implantation has been shown to re-innervate the host brain and restore DA input. Here, DA cell grafts were implanted into the STR of 6-OHDA lesioned rats and the effect on neuronal activity under urethane anesthesia (1.4 g/kg, injected intraperitoneally) was tested in the entopeduncular nucleus (EPN, the equivalent to the human globus pallidus internus), the output nucleus of the BG, and the globus pallidus (GP, the equivalent to the human globus pallidus externus), a key region in the indirect pathway. In animals, which were transplanted with cells derived from the ventral mesencephalon of embryonic day 12 rat embryos into the STR, the rotational behavior induced by DA agonists in 6-OHDA lesioned rats was significantly improved. This was accompanied by alleviated EPN firing rate and reinstated patterns of neuronal activity in the GP and EPN. Analysis of oscillatory activity revealed enhanced beta activity in both regions, which was reduced after grafting. In summary these data indicate restoration of BG motor loop towards normal activity by DA graft integration.
Several findings support the concept that sensorimotor integration is disturbed in Parkinson'... more Several findings support the concept that sensorimotor integration is disturbed in Parkinson's disease (PD) and in levodopa-induced dyskinesias. In this study, we explored the neuronal firing activity of excitatory pyramidal cells and inhibitory interneurons in the forelimb region of the primary somatosensory cortex (S1FL-Ctx), along with its interaction with oscillatory activity of the primary motor cortex (MCtx) in 6-hydroxydopamine lesioned hemiparkinsonian (HP) and levodopa-primed dyskinetic (HP-LID) rats as compared to controls under urethane (1.4g/kg, i.p.) anesthesia. Further, gene expression patterns of distinct markers for inhibitory GABAergic neurons were analyzed in both cortical regions. While firing frequency and burst activity of S1FL-Ctx inhibitory interneurons were reduced in HP and HP-LID rats, measures of irregularity were enhanced in pyramidal cells. Further, enhanced coherence of distinct frequency bands of the theta/alpha, high-beta, and gamma frequency, tog...
Electrical stimulation of the primary visual cortex (V1) is an experimental approach for visual p... more Electrical stimulation of the primary visual cortex (V1) is an experimental approach for visual prostheses. We here compared the response to intracortical and epicortical stimulation of the primary visual cortex by using c-Fos immunoreactivity as a marker for neuronal activation. The primary visual cortex of male Sprague Dawley rats was unilaterally stimulated for four hours using bipolar electrodes placed either intracortically in layer IV (n=26) or epicortically (n=20). Four different current intensities with a constant pulse width of 200μs and a constant frequency of 10Hz were used, for intracortical stimulation with an intensity of 0μA (sham-stimulation), 10μA, 20μA and 40μA, and for epicortical stimulation 0μA, 400μA, 600μA and 800μA. Subsequently all animals underwent c-Fos immunostaining and c-Fos expression was assessed in layer I-VI of the primary visual cortex within 200μm and 400μm distance to the stimulation site. C-Fos expression was higher after intracortical stimulation compared to epicortical stimulation, even though ten times lower current intensities were applied. Furthermore intracortical stimulation resulted in more focal neuronal activation than epicortical stimulation. C-Fos expression was highest after intracortical stimulation with 20μA compared to all other intensities. Epicortical stimulation showed a linear increase of c-Fos expression with the highest expression at 800μA. Sham stimulation showed similar expression of c-Fos in both hemispheres. The contralateral hemisphere was not affected by intracortical or epicortical stimulation of either intensities. In summary, intracortical stimulation resulted in more focal neuronal activation with less current than epicortical stimulation. This model may be used as a simple but reliable model to evaluate electrodes for microstimulation of the primary visual cortex before testing in more complex settings.
The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after lo... more The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN "on" and "off" levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve...
Electrodes for neural stimulation and recording are used for the treatment of neurological disord... more Electrodes for neural stimulation and recording are used for the treatment of neurological disorders. Their features critically depend on impedance and interaction with brain tissue. The effect of surface modification on electrode impedance was examined in vitro and in vivo after intracranial implantation in rats. Electrodes coated by electrophoretic deposition with platinum nanoparticles (NP; <10 and 50 nm) as well as uncoated references were implanted into the rat's subthalamic nucleus. After postoperative recovery, rats were electrostimulated for 3 weeks. Impedance was measured before implantation, after recovery and then weekly during stimulation. Finally, local field potential was recorded and tissue-to-implant reaction was immunohistochemically studied. Coating with NP significantly increased electrode's impedance in vitro. Postoperatively, the impedance of all electrodes was temporarily further increased. This effect was lowest for the electrodes coated with partic...
In patients with medical-refractory schizophrenia electroconvulsive therapy (ECT), i.e., the indu... more In patients with medical-refractory schizophrenia electroconvulsive therapy (ECT), i.e., the induction of therapeutic seizures via cortical surface electrodes, is effectively used. Electroconvulsive stimulation (ECS) in rodents simulates ECT in humans and is applied to investigate the mechanisms underlying this treatment. Experimentally-induced reduced prepulse inhibition (PPI) of the acoustic startle response (ASR), i.e., the reduction of the startle response to an intense acoustic stimulus when this stimulus is shortly preceded by a weaker not-startling stimulus, serves as an endophenotype for neuropsychiatric disorders that are accompanied by disturbed sensorimotor gating, such as schizophrenia. Here we used rats selectively bred for high and low PPI to evaluate whether bifrontal cortical ECS would affect PPI. For this purpose, cortical screw electrodes were stereotactically implanted above the frontal cortex. After recovery ECS was applied for five consecutive days with stimuli of 1 ms pulse-width, 100 pulses/s, 1 s duration, ranging from 5.5 mA to 10 mA. PPI of ASR was measured one day before ECS, and on days 1, 7, and 14 after the last ECS. In rats with breeding-induced low PPI ECS increased PPI one week after stimulation. In contrast, ECS decreased PPI in rats with high PPI on the first day after stimulation. The reaction to the startle impulse was reduced by ECS without difference between groups. This work provides evidence that rats with breeding-induced high or low PPI could be used to further investigate the underlying mechanisms of ECT in neuropsychiatric disorders with disturbed sensorimotor gating like schizophrenia.
The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output n... more The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25[Formula: see text]Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25[Formula: see text]Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to...
Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015
Rats selectively bred for deficient prepulse inhibition (PPI), an operant measure of sensorimotor... more Rats selectively bred for deficient prepulse inhibition (PPI), an operant measure of sensorimotor gating in which a weak prepulse stimulus attenuates the response to a subsequent startling stimulus, may be used to study certain pathophysiological mechanisms and therapeutic strategies for neuropsychiatric disorders with abnormalities in information processing, such as schizophrenia and Tourette's syndrome (TS). Little is known about neuronal activity in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAC), which are involved in the modulation of PPI. Here, we examined neuronal activity in these structures, and also in the entopeduncular nucleus (EPN), since lesions of this region alleviate the PPI deficit. Male rats with breeding-induced high and low expression of PPI (n = 7, each) were anesthetized with urethane (1.4 mg/kg). Single-unit activity and local field potentials were recorded in the mPFC, the NAC and in the EPN. In the mPFC discharge rate, measures of irregularity and burst activity were significantly reduced in PPI low compared to PPI high rats (P b 0.05), while analysis in the NAC showed approximately inverse behavior. In the EPN no difference between groups was found. Additionally, the oscillatory theta band activity (4-8 Hz) was enhanced and the beta band (13-30 Hz) and gamma band (30-100 Hz) activity was reduced in the NAC in PPI low rats. Reduced neuronal activity in the mPFC and enhanced activity in the NAC of PPI low rats, together with altered oscillatory behavior are clearly associated with reduced PPI. PPI low rats may thus be used to study the pathophysiology and therapeutic strategies for neuropsychiatric disorders accompanied by deficient sensorimotor gating.
The retinal dopamine (DA) deficiency is an important feature of the pathogenesis in Parkinson'... more The retinal dopamine (DA) deficiency is an important feature of the pathogenesis in Parkinson's disease (PD) visual dysfunction. Systemic inhibition of complex I (rotenone) in rats has been proposed as a model of PD. In this study, we investigated whether systemic inhibition of complex I can induce impairment of DA-ergic cells in the retina, similar to the destruction of retinal cells found in PD patients. Rotenone (2.5mg/kg i.p., daily) was administered over 60 days. Neurochemically, rotenone treated rats showed a depletion of DA in the striatum and substantia nigra (SN). In addition, the number of retinal DA-ergic amacrine cells was significantly reduced in the rotenone treated animals. This study is the first one giving highlight towards a deeper understanding of systemic complex I inhibition (rotenone as an environmental toxin) and the connection between both, DA-ergic degeneration in the nigrostriatal pathway, and in the DA-ergic amacrine cells of the retina.
Journal of neural transmission (Vienna, Austria : 1996), 2014
Altered processing in the basal ganglia has been described both in dystonia and Tourette's sy... more Altered processing in the basal ganglia has been described both in dystonia and Tourette's syndrome (TS). Deep brain stimulation (DBS) of the globus pallidus internus (GPi) has become a recognized treatment for dystonia and has been used successfully to alleviate tics in TS. This study evaluates possible differences of GPi linear and nonlinear neuronal discharge characteristics between patients with dystonia and TS. Nine patients with primary dystonia and six patients with TS were studied during functional stereotactic neurosurgical operations for implantation of DBS electrodes under general anesthesia. Six patients with primary dystonia under local anesthesia served as non-anesthetized controls. Single-unit activity recordings in the GPi were obtained during routine microelectrode recording and mapping to delineate nuclear borders and to identify the sensorimotor subregions. Anesthesia profoundly decreased neuronal activity in patients with dystonia. Dystonia patients showed ma...
Uploads
Papers by Mesbah Alam