Papers by Magdalena Luczak

Advanced Science, 2022
Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and ... more Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F‐actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin‐rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi‐scale form of biomineralization in metazoans is ptterned.
Additional file 1. Additional tables and figures.

Journal of Proteome Research, 2021
A progressive loss of functional nephrons defines chronic kidney disease (CKD). Complications rel... more A progressive loss of functional nephrons defines chronic kidney disease (CKD). Complications related to cardiovascular disease (CVD) are the principal causes of mortality in CKD; however, the acceleration of CVD in CKD remains unresolved. Our study used a complementary proteomic approach to assess mild and advanced CKD patients with different atherosclerosis stages and two groups of patients with different classical CVD progression but without renal dysfunction. We utilized a label-free approach based on LC-MS/MS and functional bioinformatic analyses to profile CKD and CVD leukocyte proteins. We revealed dysregulation of proteins involved in different phases of leukocytes' diapedesis process that is very pronounced in CKD's advanced stage. We also showed an upregulation of apoptosis-related proteins in CKD as compared to CVD. The differential abundance of selected proteins was validated by multiple reaction monitoring, ELISA, Western blotting, and at the mRNA level by ddPCR. An increased rate of apoptosis was then functionally confirmed on the cellular level. Hence, we suggest that the disturbances in leukocyte extravasation proteins may alter cell integrity and trigger cell death, as demonstrated by flow cytometry and microscopy analyses. Our proteomics data set has been deposited to the ProteomeXchange Consortium via the PRIDE repository with the data set identifier PXD018596.

Metabolites, 2021
Chronic kidney disease (CKD) is characterized by the progressive loss of functional nephrons. Alt... more Chronic kidney disease (CKD) is characterized by the progressive loss of functional nephrons. Although cardiovascular disease (CVD) complications and atherosclerosis are the leading causes of morbidity and mortality in CKD, the mechanism by which the progression of CVD accelerates remains unclear. To reveal the molecular mechanisms associated with atherosclerosis linked to CKD, we applied a shotgun lipidomics approach fortified with standard laboratory analytical methods and gas chromatography-mass spectrometry technique on selected lipid components and precursors to analyze the plasma lipidome in CKD and classical CVD patients. The MS-based lipidome profiling revealed the upregulation of triacylglycerols in CKD and downregulation of cholesterol/cholesteryl esters, sphingomyelins, phosphatidylcholines, phosphatidylethanolamines and ceramides as compared to CVD group and controls. We have further observed a decreased abundance of seven fatty acids in CKD with strong inter-correlation...

International Journal of Molecular Sciences, 2021
Patients with chronic kidney disease (CKD) are at increased risk of atherosclerosis and premature... more Patients with chronic kidney disease (CKD) are at increased risk of atherosclerosis and premature mortality, mainly due to cardiovascular events. However, well-known risk factors, which promote “classical” atherosclerosis are alone insufficient to explain the high prevalence of atherosclerosis-related to CKD (CKD-A). The complexity of the molecular mechanisms underlying the acceleration of CKD-A is still to be defied. To obtain a holistic picture of these changes, comprehensive proteomic approaches have been developed including global protein profiling followed by functional bioinformatics analyses of dysregulated pathways. Furthermore, proteomics surveys in combination with other “omics” techniques, i.e., transcriptomics and metabolomics as well as physiological assays provide a solid ground for interpretation of observed phenomena in the context of disease pathology. This review discusses the comprehensive application of various “omics” approaches, with emphasis on proteomics, to ...

The Plant Cell, 2020
Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenoty... more Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenotypic diversity. Recent analyses of sequencing data for >1000 Arabidopsis (Arabidopsis thaliana) accessions focused on small variations and did not include CNVs. Here, we performed genome-wide analysis and identified large indels (50 to 499 bp) and CNVs (500 bp and larger) in these accessions. The CNVs fully overlap with 18.3% of protein-coding genes, with enrichment for evolutionarily young genes and genes involved in stress and defense. By combining analysis of both genes and transposable elements (TEs) affected by CNVs, we revealed that the variation statuses of genes and TEs are tightly linked and jointly contribute to the unequal distribution of these elements in the genome. We also determined the gene copy numbers in a set of 1060 accessions and experimentally validated the accuracy of our predictions by multiplex ligation-dependent probe amplification assays. We then successfully...

International Journal of Nanomedicine, 2018
Background: Silk is a biocompatible and biodegradable material, able to self-assemble into differ... more Background: Silk is a biocompatible and biodegradable material, able to self-assemble into different morphological structures. Silk structures may be used for many biomedical applications, including carriers for drug delivery. The authors designed a new bioengineered spider silk protein, EMS2, and examined its property as a carrier of chemotherapeutics. Materials and methods: To obtain EMS protein, the MS2 silk monomer (that was based on the MaSp2 spidroin of Nephila clavipes) was modified by the addition of a glutamic acid residue. Both bioengineered silks were produced in an Escherichia coli expression system and purified by thermal method. The silk spheres were produced by mixing with potassium phosphate buffer. The physical properties of the particles were characterized using scanning electron microscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, and zeta potential measurements. The MTT assay was used to examine the cytotoxicity of spheres. The loading and release profiles of drugs were studied spectrophotometrically. Results: The bioengineered silk variant, EMS2, was constructed, produced, and purified. The EMS2 silk retained the self-assembly property and formed spheres. The spheres made of EMS2 and MS2 silks were not cytotoxic and had a similar secondary structure content but differed in morphology and zeta potential values; EMS2 particles were more negatively charged than MS2 particles. Independently of the loading method (pre-or post-loading), the loading of drugs into EMS2 spheres was more efficient than the loading into MS2 spheres. The advantageous loading efficiency and release rate made EMS2 spheres a good choice to deliver neutral etoposide (ETP). Despite the high loading efficiency of positively charged mitoxantrone (MTX) into EMS2 particles, the fast release rate made EMS2 unsuitable for the delivery of this drug. A faster release rate from EMS2 particles compared to MS2 particles was observed for positively charged doxorubicin (DOX). Conclusion: By modifying its sequence, silk affinity for drugs can be controlled.

Journal of Proteomics, 2019
Populations of small eukaryotic RNAs, in addition to relatively well recognized molecules such as... more Populations of small eukaryotic RNAs, in addition to relatively well recognized molecules such as miRNAs or siRNAs, also contain fragments derived from all classes of constitutively expressed non-coding RNAs. It has been recently demonstrated that the formation and accumulation of RNA fragments (RFs) is cell-/tissue-specific and depends on internal and external stimuli. Unfortunately, the mechanisms underlying RF biogenesis and function remain unclear. To better understand them, we employed RNA pull-down and mass spectrometry methods to characterize the interactions of seven RFs originating from tRNA, snoRNA and snRNA. By integrating our results with publicly available data on physical protein-protein interactions, we constructed an RF interactome network. We determined that the RF interactome comprises proteins generally different from those that interact with their parental full length RNAs. Proteins captured by the RFs were involved in mRNA splicing, tRNA processing, DNA recombination/replication, protein biosynthesis and carboxylic acid metabolism. Our data suggest that RFs can be endogenous aptamer-like molecules and potential players in recently revealed RNA-protein regulatory networks. Significance: In the recent decade it has become evident that RNAs with well-known functions (for example tRNA, snoRNA or rRNA) can be cleaved to yield short fragments, whose role in cells remains only partially characterized. At the same time, unconventional interactions between mRNA and proteins without RNA-binding domains have been demonstrated, revealing novel layers of possible RNA-mediated regulation. Considering the above, we hypothesized that RNA fragments (RFs) can be endogenous aptamer-like molecules that unconventionally interact with proteins. In this study we identified protein partners of seven selected RFs. We found that RFs bind different set of proteins than their parental full length RNAs and identified proteins differentially bound by the particular RFs. These observations suggest biological relevance of the discovered interactions. Our data provide a novel perspective on the significance of RFs and point to this pool of molecules as to a rich collection of potential components of the recently discovered RNA-protein regulatory networks. Recently, two complementary methodological approaches have been developed to study native ribonucleoprotein (RNP) complexes. On

Journal of translational medicine, Jan 20, 2018
Expression of the NPM1 gene, encoding nucleophosmin, is upregulated in cancers. Although more tha... more Expression of the NPM1 gene, encoding nucleophosmin, is upregulated in cancers. Although more than ten NPM1 transcripts are known, the reports were usually limited to one predominant transcript. In leukemia, the NPM1 expression has not been widely studied so far. In acute myeloid leukemia (AML), the mutational status of the gene seems to play a pivotal role in carcinogenesis. Therefore, the aim of the study was to quantify alternative NPM1 transcripts in two types of acute leukemia, AML and ALL (acute lymphoblastic leukemia). Using droplet digital PCR, we analyzed the levels of three protein-coding NPM1 transcripts in 66 samples collected from AML and ALL patients and 16 control samples. Using RNA-seq, we detected 8 additional NPM1 transcripts, including non-coding splice variants with retained introns. For data analysis, Welch two sample t-test, Pearson's correlation and Kaplan-Meier analysis were applied. The levels of the particular NPM1 transcripts were significantly differe...
Polish Archives of Internal Medicine, 2017
Protein names Uni qu e pe pti des Uni que seq uen ce cov era ge [%] M ol. we igh t [k Da ] AN OV ... more Protein names Uni qu e pe pti des Uni que seq uen ce cov era ge [%] M ol. we igh t [k Da ] AN OV A p val ue Ttest p

Oncotarget, Jan 16, 2017
Curative responses in the treatment of multiple myeloma (MM) are limited by the emergence of ther... more Curative responses in the treatment of multiple myeloma (MM) are limited by the emergence of therapeutic resistance. To address this problem, we set out to identify druggable mechanisms that convey resistance to proteasome inhibitors (PIs; e.g., bortezomib), which are cornerstone agents in the treatment of MM. In isogenic pairs of PI sensitive and resistant cells, we observed stark differences in cellular bioenergetics between the divergent phenotypes. PI resistant cells exhibited increased mitochondrial respiration driven by glutamine as the principle fuel source. To target glutamine-induced respiration in PI resistant cells, we utilized the glutaminase-1 inhibitor, CB-839. CB-839 inhibited mitochondrial respiration and was more cytotoxic in PI resistant cells as a single agent. Furthermore, we found that CB-839 synergistically enhanced the activity of multiple PIs with the most dramatic synergy being observed with carfilzomib (Crflz), which was confirmed in a panel of genetically ...

Scientific reports, Jan 7, 2016
Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardio... more Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardiovascular causes. Using an iTRAQ MS/MS approach, we investigated the alterations in plasma protein accumulation in patients with CKD and classical cardiovascular disease (CVD) without CKD. The proteomic analysis led to the identification of 130 differentially expressed proteins among CVD and CKD patients and healthy volunteers. Bioinformatics analysis revealed that 29 differentially expressed proteins were involved in lipid metabolism and atherosclerosis, 20 of which were apolipoproteins and constituents of high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Although dyslipidemia is common in CKD patients, we found that significant changes in apolipoproteins were not strictly associated with changes in plasma lipid levels. A lack of correlation between apoB and LDL concentration and an inverse relationship of some proteins with the HDL level were revealed. An increased level...

Oncotarget, 2016
Identifying biomarkers of the resistance in multiple myeloma (MM) is a key research challenge. We... more Identifying biomarkers of the resistance in multiple myeloma (MM) is a key research challenge. We aimed to identify proteins that differentiate plasma cells in patients with refractory/relapsed MM (RRMM) who achieved at least very good partial response (VGPR) and in those with reduced response to PAD chemotherapy (bortezomib, doxorubicin and dexamethasone). Comparative proteomic analysis was conducted on pretreatment plasma cells from 77 proteasome inhibitor naïve patients treated subsequently with PAD due to RRMM. To increase data confidence we used two independent proteomic platforms: isobaric Tags for Relative and Absolute Quantitation (iTRAQ) and label free (LF). Proteins were considered as differentially expressed when their accumulation between groups differed by at least 50% in iTRAQ and LF. The proteomic signature revealed 118 proteins (35 up-regulated and 83 down-regulated in ≥ VGPR group). Proteins were classified into four classes: (1) involved in proteasome function; (2) involved in the response to oxidative stress; (3) related to defense response; and (4) regulating the apoptotic process. We confirmed the differential expression of proteasome activator complex subunit 1 (PSME1) by enzyme-linked immunosorbent assay. Increased expression of proteasomes and proteins involved in protection from oxidative stress (eg., TXN, TXNDC5) plays a major role in bortezomib resistance.

Amino acids, Jan 7, 2016
Relapse and metastasis are the main causes of unfavorable outcome in head and neck cancers. Where... more Relapse and metastasis are the main causes of unfavorable outcome in head and neck cancers. Whereas, understanding of the molecular background of these processes is far from being complete. Therefore, in this study we aimed to identify potential biomarker candidates of relapse and metastasis in laryngeal squamous cell carcinoma (LSCC) by combining the 2D electrophoresis based protein screen and immunohistochemical analysis of candidate proteins. We screened three groups of LSCC cell lines derived from primary tumors, recurrent tumors and metastases and identified seven proteins that differed significantly in relative abundance between the analyzed groups. Among the identified proteins were the heat shock proteins HSP60 and HSP70 that were significantly downregulated both in recurrences- and metastases-derived cell lines but not in primary tumor-derived cell lines. Moreover, we identified significant upregulation of the annexin V, calreticulin and the inorganic pyrophosphatase (PPA1)...

Journal of Dairy Science, 2016
Currently, research interest is increasing in horse milk composition and its effect on human heal... more Currently, research interest is increasing in horse milk composition and its effect on human health. Despite previously published studies describing the presence of intra-and interbreed variability of equine milk components, no investigations have focused on the genetic background of this variation. Among horse caseins and the genes encoding them, least is known about the structure and expression of the α-S2 casein gene, CSN1S2. Herein, based on direct sequencing of the equine CSN1S2 coding sequence, we describe the presence of 51-bp insertion-deletion (in/del) polymorphism, which significantly changes the protein sequence (lack or presence of 17-amino acid serine-rich peptide). Bioinformatic analysis revealed that the observed in/del polymorphism spanned exactly 2 exons; therefore, we hypothesized that we were observing different CSN1S2 splicing isoforms. However, further investigation indicated that the detected sequence variation was caused by a large (1.3-kb) deletion in the genomic DNA. We found that the polymorphic forms (A, longer; B, shorter; KP658381 and KP658382 GenBank records, respectively) were unevenly distributed among different horse breeds (the highest frequency of variant B was observed in coldblood horses and Haflingers). We propose that the analyzed polymorphism is associated with CSN1S2 expression level (the highest expression was recorded for individuals carrying the BB genotype), which was much more pronounced for milk CSN1S2 protein content than for relative transcript abundance (measured in milk somatic cells). Our results provide insight into the equine CSN1S2 structure and lay a foundation for further functional analyses regarding, for example, al-lergenicity or physiochemical properties of the observed CSN1S2 variants.
Expert Review of Proteomics, 2015

Journal of Alzheimer's disease : JAD, 2014
Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Bleomycin hydrolase (BLMH) ... more Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Bleomycin hydrolase (BLMH) participates in Hcy metabolism and is also linked to AD. The inactivation of the Blmh gene in mice causes accumulation of Hcy-thiolactone in the brain and increases susceptibility to Hcy-thiolactone-induced seizures. To gain insight into brain-related Blmh function, we used two-dimensional IEF/SDS-PAGE gel electrophoresis and MALDI-TOF/TOF mass spectrometry to examine brain proteomes of Blmh-/- mice and their Blmh+/+ littermates fed with a hyperhomocysteinemic high-Met or a control diet. We found that: (1) proteins involved in brain-specific function (Ncald, Nrgn, Stmn1, Stmn2), antioxidant defenses (Aop1), cell cycle (RhoGDI1, Ran), and cytoskeleton assembly (Tbcb, CapZa2) were differentially expressed in brains of Blmh-null mice; (2) hyperhomocysteinemia amplified effects of the Blmh-/- genotype on brain protein expression; (3) proteins involved in brain-specific function (Pebp1), anti...

Journal of Translational Medicine, 2015
Background: Atherosclerosis is a major cause of cardiac events and mortality in patients sufferin... more Background: Atherosclerosis is a major cause of cardiac events and mortality in patients suffering from chronic kidney disease (CKD). Moreover, the risk of cardiovascular disease (CVD) development in patients with CKD increases as kidney function declines. Although the close connection between atherosclerosis and kidney dysfunction is undeniable, particular risk factors and specific mechanisms that promote CVD in patients with CKD remain unclear. To gain insight into better recognition of the mechanisms of accelerated atherosclerosis in patients with CKD, we performed a comparative proteomic analysis of blood plasma from patients in various stages of CKD and thus distinct progression of atherosclerosis (n = 90), patients with advanced CVD and normal renal function (n = 30) and healthy volunteers (n = 30). Methods: Plasma samples were depleted using affinity chromatography and divided into three fractions: highabundant, low-abundant and low-molecular weight proteins. The first two fractions were analyzed by twodimensional gel electrophoresis and mass spectrometry, the last one has been subjected to direct MS/MS analysis. A proteomic profiles for high-abundant, low-abundant and low-molecular weight proteins fractions were obtained. Differential accumulated proteins were confirmed by selected reaction monitoring analysis (SRM). The Gene Ontology (GO) function and the interaction networks of differentially expressed proteins were then analyzed. Results: Forty-nine proteins (13 high-and 36 low-molecular mass) showed differences in accumulation levels. For eleven of them differential expression were confirmed by selected reaction monitoring analysis. Bioinformatic analysis showed that identified differential proteins were related to three different processes: the blood coagulation cascade, the transport, binding and metabolism of lipoproteins and inflammatory processes. Conclusions: Obtained data provide an additional line of evidence that different molecular mechanisms are involved in the development of CKD-and CVD-related atherosclerosis. The abundance of some anti-atherogenic factors revealed in patients with CKD suggests that these factors are not associated with the reduction of atherosclerosis progression in CKD that is typically observed in "classical" CVD. Moreover, obtained data also suggest that mechanism of CVD acceleration may be different in initial and advanced stages of CKD. Undoubtedly, in advanced stages of CKD inflammation is highly pronounced.

PLoS ONE, 2014
Shotgun proteomic methods involving iTRAQ (isobaric tags for relative and absolute quantitation) ... more Shotgun proteomic methods involving iTRAQ (isobaric tags for relative and absolute quantitation) peptide labeling facilitate quantitative analyses of proteomes and searches for useful biomarkers. However, the plasma proteome's complexity and the highly dynamic plasma protein concentration range limit the ability of conventional approaches to analyze and identify a large number of proteins, including useful biomarkers. The goal of this paper is to elucidate the best approach for plasma sample pretreatment for MS-and iTRAQ-based analyses. Here, we systematically compared four approaches, which include centrifugal ultrafiltration, SCX chromatography with fractionation, affinity depletion, and plasma without fractionation, to reduce plasma sample complexity. We generated an optimized protocol for quantitative protein analysis using iTRAQ reagents and an UltrafleXtreme (Bruker Daltonics) MALDI TOF/TOF mass spectrometer. Moreover, we used a simple, rapid, efficient, but inexpensive sample pretreatment technique that generated an optimal opportunity for biomarker discovery. We discuss the results from the four sample pretreatment approaches and conclude that SCX chromatography without affinity depletion is the best plasma sample preparation pretreatment method for proteome analysis. Using this technique, we identified 1,780 unique proteins, including 1,427 that were quantified by iTRAQ with high reproducibility and accuracy.

ABSTRACT Proteomics is a scientific discipline that focuses on the large-scale study of proteins,... more ABSTRACT Proteomics is a scientific discipline that focuses on the large-scale study of proteins, particularly their structures, functions and intera ctions. The proteome is the full complement of proteins expressed by genome. During the last de cade, thanks to subset of proteomic techniques and workflows, it has been possible to i dentify: diagnostic protein biomarkers, potential therapeutic targets and also biotechnolog ically important plant proteins, like those that give a plant resistance to drought. Over the l ast years, proteomics has generated a relatively large number of reviews on technical asp ects and concepts. Although total automation and reproducibility are possible, the pr otocols of protein isolation and separation are sample specific. Moreover, most of them address the development of optimal sample preparation protocols of mammalian cells and tissue . In contrast, plant proteomics is still in its infancy, probably because plant material is very re calcitrant. The objective of this review is to pay attention to some methodological aspects of pro teomic analyses using 2DE and mass spectrometry, especially in the case of plant mater ial.
Uploads
Papers by Magdalena Luczak