Particokinetics: Computational analysis of the superparamagnetic iron oxide nanoparticles deposit... more Particokinetics: Computational analysis of the superparamagnetic iron oxide nanoparticles deposition process
Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide ... more Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide magnetic nanoparticles in rat C6 glioma cell line Marcação intracelular e processo de quantificação por imagem por ressonância magnética utilizando nanopartículas magnéticas de óxido de ferro em células da linhagem C6 de glioma de rato
This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem c... more This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem cells from young and old mice labeled with SPIONNIRF-Rh conjugated with two types of fluorophores (NIRF and Rhodamine), and their grafting by bioluminescence (BLI) in a bone marrow transplant (BMT) model. In an in vitro study, we isolated bone marrow mononuclear cells (BM-MNC) from young and old mice, and analyzed the physical–chemical characteristics of SPIONNIRF-Rh, their internalization, cell viability, and the iron quantification by NIRF, ICP-MS, and MRI. The in vivo study was performed in a BMT model to evaluate the homing, tracking, and grafting of young and old BM-MNC labeled with SPIONNIRF-Rh by NIRF and BLI, as well as the hematological reconstitution for 120 days. 5FU influenced the number of cells isolated mainly in young cells. SPIONNIRF-Rh had adequate characteristics for efficient internalization into BM-MNC. The iron load quantification by NIRF, ICP-MS, and MRI was in the o...
Objective: To establish the method of isolation and culture of human glioblastoma neurospheres, a... more Objective: To establish the method of isolation and culture of human glioblastoma neurospheres, and the purification of their stem cells, followed by the process of obtaining tumor subspheres, immunophenotypically characterizing this clonogenic set. Methods: Through the processing of glioblastoma samples (n=3), the following strategy of action was adopted: (i) establish primary culture of glioblastoma; (ii) isolation and culture of tumor neurospheres; (iii) purify cells that initiate tumors (CD133 + ) by magnetic separation system (MACS); (iv) obtain tumor subspheres; (v) study the expression of the markers nestin, CD133, and GFAP. Results: The study successfully described the process of isolation and culture of glioblastoma subspheres, which consist of a number of clonogenic cells immunophenotypically characterized as neural, which are able to initiate tumor formation. Conclusion: These findings may contribute to a better understanding of the process of gliomagenesis.
Objective: To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell lab... more Objective: To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell labeling, and to establish a study of multimodal magnetic nanoparticles-Rhodamine B detection at labeled cells evaluating they viability at concentrations of 10µg Fe/mL and 100µg Fe/mL. Methods: We performed the analysis of stability of multimodal magnetic nanoparticles-Rhodamine B in different culture media; the mesenchymal stem cells labeling with multimodal magnetic nanoparticles-Rhodamine B; the intracellular detection of multimodal magnetic nanoparticles-Rhodamine B in mesenchymal stem cells, and assessment of the viability of labeled cells by kinetic proliferation. Results: The stability analysis showed that multimodal magnetic nanoparticles-Rhodamine B had good stability in cultured Dulbecco’s Modified Eagle’s-Low Glucose medium and RPMI 1640 medium. The mesenchymal stem cell with multimodal magnetic nanoparticles-Rhodamine B described location of intracellular nanoparticles, which w...
This in vitro study aims to evaluate the magnetic hyperthermia (MHT) technique and the best strat... more This in vitro study aims to evaluate the magnetic hyperthermia (MHT) technique and the best strategy for internalization of magnetic nanoparticles coated with aminosilane (SPIONAmine) in glioblastoma tumor cells. SPIONAmine of 50 and 100 nm were used for specific absorption rate (SAR) analysis, performing the MHT with intensities of 50, 150, and 300 Gauss and frequencies varying between 305 and 557 kHz. The internalization strategy was performed using 100, 200, and 300 µgFe/mL of SPIONAmine, with or without Poly-L-Lysine (PLL) and filter, and with or without static or dynamic magnet field. The cell viability was evaluated after determination of MHT best condition of SPIONAmine internalization. The maximum SAR values of SPIONAmine (50 nm) and SPIONAmine (100 nm) identified were 184.41 W/g and 337.83 W/g, respectively, using a frequency of 557 kHz and intensity of 300 Gauss (≈23.93 kA/m). The best internalization strategy was 100 µgFe/mL of SPIONAmine (100 nm) using PLL with filter an...
The objective of this study was to highlight the global scientific effort to fight the SARS-CoV-2... more The objective of this study was to highlight the global scientific effort to fight the SARS-CoV-2, addressing the preliminary results of passive immunization through convalescent plasma. We performed a search at the major databases of interventional clinical trial protocols about the transfusion of convalescent plasma in patients with COVID-19, as well as, published articles (n≥25), using the following search strategy:[(COVID-19 OR SARS-CoV-2 OR nCoV-2019)AND (Convalescent plasma OR Plasma exchange) AND (Treatment OR Therapy)]. A total of 24 interventional clinical trial protocols (advanced in phases II-III, III, and IV) were included in this review, as well as three studies that had enough outcomes to evaluate the efficacy of convalescent plasma therapy for patients with COVID-19. All interventional clinical trial protocols applied approximately 500mL of convalescent plasma (from single or more donations) in hospitalized patients, mainly in patients with severe disease associated w...
Magnetite (Fe3O4) nanoparticles have been studied extensively due to their good magnetic, optic a... more Magnetite (Fe3O4) nanoparticles have been studied extensively due to their good magnetic, optic and electric properties which offer a great potential of applications in many field especially in removal of heavy metals such as the adsorption of poisonous Cr(VI) ion in water. In addition, Fe3O4 is the only material that has up to now been use in human because it is the only material which is known to be biocompatible, without relevant toxicity in the applied dosage. In this study Fe3O4 nanoparticles were prepared by reduction of ferric oxide (Fe2O3) precursor at 598 K for 10, 20, 30 and 40 min. While, ferric oxide (Fe2O3) precursor was prepared by electrodeposition of iron plate in the N,N-dimethylformamide solvent and tetraethylammonium perchlorate and naphthalene as mediators at 263 K. Reduction of Fe2O3 was carried out with an isothermal heating at 598 K under hydrogen atmosphere. Fe2O3 and Fe3O4 were characterized with XRD, BET Surface area, FTIR, FESEM-EDX and TEM. The surface area of both Fe2O3 and Fe3O4 was 38-45 m 2 /g with the average particle size was 40-60 nm. The XRD result showed that the crystallinity of Fe3O4 increased with reduction time. The activity of Fe2O3 and Fe3O4 nanoparticles were tested on the adsorption of chromium (VI) at room temperature in which 30-40 % of Cr(VI) ion was adsorbed on the Fe2O3 and Fe3O4 nanoparticles.
O presente trabalho tem por objetivo propor um metodo adequado de secagem de sistemas magneticos ... more O presente trabalho tem por objetivo propor um metodo adequado de secagem de sistemas magneticos coloidais, fundamental para a analise morfologica e estrutural dos ferrofluidos, como os utilizados como agentes de contraste em Imagem por Ressonância Magnetica (IRM). Foram empregados tres metodos de secagem do ferrofluido: secagem em atmosfera de nitrogenio a 70 °C, secagem em ar a 70 °C e secagem por liofilizacao. O estudo foi feito com o farmaco Endorem™-Guerbet um ferrofluido biocompativel, utilizado como marcador em IRM e que se apresenta na forma de suspensao coloidal. O estudo foi realizado atraves das tecnicas de difracao de raios X (DRX), para observar as possiveis mudancas fisico-quimicas dos estabilizantes e evidenciar a provavel fase do oxido de ferro e mediante a microscopia eletronica de transmissao (MET) para analisar a morfologia e distribuicao das nanoparticulas. Dentre os metodos de secagem utilizados neste estudo, a secagem por liofilizacao mostrou-se mais adequada p...
Coronavirus disease 2019 (COVID-19) is the biggest health challenge of the 21st century, affectin... more Coronavirus disease 2019 (COVID-19) is the biggest health challenge of the 21st century, affecting millions of people globally. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has ignited an unprecedented effort from the scientific community in the development of new vaccines on different platforms due to the absence of a broad and effective treatment for COVID-19 or prevention strategy for SARS-CoV-2 dissemination. Based on 50 current studies selected from the main clinical trial databases, this systematic review summarizes the global race for vaccine development against COVID-19. For each study, the main intervention characteristics, the design used, and the local or global center partnerships created are highlighted. Most vaccine developments have taken place in Asia, using a viral vector method. Two purified inactivated SARS-CoV-2 vaccine candidates, an mRNA-based vaccine mRNA1273, and the chimpanzee adenoviral vaccine ChAdOx1 are currently in phase ...
The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the s... more The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the subsequent short and long-term engraftment of these cells in the niche. We performed a systematic review of the methods employed to track hematopoietic reconstitution using molecular imaging. We searched articles indexed, published prior to January 2020, in PubMed, Cochrane, and Scopus with the following keyword sequences: (Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND (Transplantation). Of 2191 articles identified, only 21 articles were included in this review, after screening and eligibility assessment. The cell source was in the majority of bone marrow from mice (43%), followed by the umbilical cord from humans (33%). The labeling agent had the follow distribution between the selected studies: 14% nanoparticle, 29% radioisotope, 19% fluorophore, 19% luciferase, and 19% animal transgenic. The type of graft used in the studies was 57% allogeneic, ...
Fibroblastic reticular cells (FRCs), usually found and isolated from the T cell zone of lymph nod... more Fibroblastic reticular cells (FRCs), usually found and isolated from the T cell zone of lymph nodes, have recently been described as much more than simple structural cells. Originally, these cells were described to form a conduit system called the “reticular fiber network” and for being responsible for transferring the lymph fluid drained from tissues through afferent lymphatic vessels to the T cell zone. However, nowadays, these cells are described as being capable of secreting several cytokines and chemokines and possessing the ability to interfere with the immune response, improving it, and also controlling lymphocyte proliferation. Here, we performed a systematic review of the several methods employed to investigate the mechanisms used by fibroblastic reticular cells to control the immune response, as well as their ability in determining the fate of T cells. We searched articles indexed and published in the last five years, between 2016 and 2020, in PubMed, Scopus, and Cochrane,...
Glioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment i... more Glioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment is mediated, in part, by the angiogenic process. New treatments involving the application of nanoformulations composed of encapsulated drugs coupled to peptide motifs that direct drugs to specific targets triggered in angiogenesis have been developed to reach and modulate different phases of this process. We performed a systematic review with the search criterion (Glioblastoma OR Glioma) AND (Therapy OR Therapeutic) AND (Nanoparticle) AND (Antiangiogenic OR Angiogenesis OR Anti-angiogenic) in Pubmed, Scopus, and Cochrane databases, in which 312 articles were identified; of these, only 27 articles were included after selection and analysis of eligibility according to the inclusion and exclusion criteria. The data of the articles were analyzed in five contexts: the characteristics of the tumor cells; the animal models used to induce GBM for antiangiogenic treatment; the composition of nanof...
This in vitro study aimed to find the best method of granulocyte isolation for subsequent labelin... more This in vitro study aimed to find the best method of granulocyte isolation for subsequent labeling with multimodal nanoparticles (magnetic and fluorescent properties) to enable detection by optical and magnetic resonance imaging (MRI) techniques. The granulocytes were obtained from venous blood samples from 12 healthy volunteers. To achieve high purity and yield, four different methods of granulocyte isolation were evaluated. The isolated granulocytes were labeled with multimodal superparamagnetic iron oxide nanoparticles (M-SPIONs) coated with dextran, and the iron load was evaluated qualitatively and quantitatively by MRI, near-infrared fluorescence (NIRF) and inductively coupled plasma mass spectrometry (ICP-MS). The best method of granulocyte isolation was Percoll with Ficoll, which showed 95.92% purity and 94% viability. After labeling with M-SPIONs, the granulocytes showed 98.0% purity with a yield of 3.5 × 106 cells/mL and more than 98.6% viability. The iron-loading value in ...
Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (G... more Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with...
Particokinetics: Computational analysis of the superparamagnetic iron oxide nanoparticles deposit... more Particokinetics: Computational analysis of the superparamagnetic iron oxide nanoparticles deposition process
Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide ... more Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide magnetic nanoparticles in rat C6 glioma cell line Marcação intracelular e processo de quantificação por imagem por ressonância magnética utilizando nanopartículas magnéticas de óxido de ferro em células da linhagem C6 de glioma de rato
This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem c... more This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem cells from young and old mice labeled with SPIONNIRF-Rh conjugated with two types of fluorophores (NIRF and Rhodamine), and their grafting by bioluminescence (BLI) in a bone marrow transplant (BMT) model. In an in vitro study, we isolated bone marrow mononuclear cells (BM-MNC) from young and old mice, and analyzed the physical–chemical characteristics of SPIONNIRF-Rh, their internalization, cell viability, and the iron quantification by NIRF, ICP-MS, and MRI. The in vivo study was performed in a BMT model to evaluate the homing, tracking, and grafting of young and old BM-MNC labeled with SPIONNIRF-Rh by NIRF and BLI, as well as the hematological reconstitution for 120 days. 5FU influenced the number of cells isolated mainly in young cells. SPIONNIRF-Rh had adequate characteristics for efficient internalization into BM-MNC. The iron load quantification by NIRF, ICP-MS, and MRI was in the o...
Objective: To establish the method of isolation and culture of human glioblastoma neurospheres, a... more Objective: To establish the method of isolation and culture of human glioblastoma neurospheres, and the purification of their stem cells, followed by the process of obtaining tumor subspheres, immunophenotypically characterizing this clonogenic set. Methods: Through the processing of glioblastoma samples (n=3), the following strategy of action was adopted: (i) establish primary culture of glioblastoma; (ii) isolation and culture of tumor neurospheres; (iii) purify cells that initiate tumors (CD133 + ) by magnetic separation system (MACS); (iv) obtain tumor subspheres; (v) study the expression of the markers nestin, CD133, and GFAP. Results: The study successfully described the process of isolation and culture of glioblastoma subspheres, which consist of a number of clonogenic cells immunophenotypically characterized as neural, which are able to initiate tumor formation. Conclusion: These findings may contribute to a better understanding of the process of gliomagenesis.
Objective: To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell lab... more Objective: To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell labeling, and to establish a study of multimodal magnetic nanoparticles-Rhodamine B detection at labeled cells evaluating they viability at concentrations of 10µg Fe/mL and 100µg Fe/mL. Methods: We performed the analysis of stability of multimodal magnetic nanoparticles-Rhodamine B in different culture media; the mesenchymal stem cells labeling with multimodal magnetic nanoparticles-Rhodamine B; the intracellular detection of multimodal magnetic nanoparticles-Rhodamine B in mesenchymal stem cells, and assessment of the viability of labeled cells by kinetic proliferation. Results: The stability analysis showed that multimodal magnetic nanoparticles-Rhodamine B had good stability in cultured Dulbecco’s Modified Eagle’s-Low Glucose medium and RPMI 1640 medium. The mesenchymal stem cell with multimodal magnetic nanoparticles-Rhodamine B described location of intracellular nanoparticles, which w...
This in vitro study aims to evaluate the magnetic hyperthermia (MHT) technique and the best strat... more This in vitro study aims to evaluate the magnetic hyperthermia (MHT) technique and the best strategy for internalization of magnetic nanoparticles coated with aminosilane (SPIONAmine) in glioblastoma tumor cells. SPIONAmine of 50 and 100 nm were used for specific absorption rate (SAR) analysis, performing the MHT with intensities of 50, 150, and 300 Gauss and frequencies varying between 305 and 557 kHz. The internalization strategy was performed using 100, 200, and 300 µgFe/mL of SPIONAmine, with or without Poly-L-Lysine (PLL) and filter, and with or without static or dynamic magnet field. The cell viability was evaluated after determination of MHT best condition of SPIONAmine internalization. The maximum SAR values of SPIONAmine (50 nm) and SPIONAmine (100 nm) identified were 184.41 W/g and 337.83 W/g, respectively, using a frequency of 557 kHz and intensity of 300 Gauss (≈23.93 kA/m). The best internalization strategy was 100 µgFe/mL of SPIONAmine (100 nm) using PLL with filter an...
The objective of this study was to highlight the global scientific effort to fight the SARS-CoV-2... more The objective of this study was to highlight the global scientific effort to fight the SARS-CoV-2, addressing the preliminary results of passive immunization through convalescent plasma. We performed a search at the major databases of interventional clinical trial protocols about the transfusion of convalescent plasma in patients with COVID-19, as well as, published articles (n≥25), using the following search strategy:[(COVID-19 OR SARS-CoV-2 OR nCoV-2019)AND (Convalescent plasma OR Plasma exchange) AND (Treatment OR Therapy)]. A total of 24 interventional clinical trial protocols (advanced in phases II-III, III, and IV) were included in this review, as well as three studies that had enough outcomes to evaluate the efficacy of convalescent plasma therapy for patients with COVID-19. All interventional clinical trial protocols applied approximately 500mL of convalescent plasma (from single or more donations) in hospitalized patients, mainly in patients with severe disease associated w...
Magnetite (Fe3O4) nanoparticles have been studied extensively due to their good magnetic, optic a... more Magnetite (Fe3O4) nanoparticles have been studied extensively due to their good magnetic, optic and electric properties which offer a great potential of applications in many field especially in removal of heavy metals such as the adsorption of poisonous Cr(VI) ion in water. In addition, Fe3O4 is the only material that has up to now been use in human because it is the only material which is known to be biocompatible, without relevant toxicity in the applied dosage. In this study Fe3O4 nanoparticles were prepared by reduction of ferric oxide (Fe2O3) precursor at 598 K for 10, 20, 30 and 40 min. While, ferric oxide (Fe2O3) precursor was prepared by electrodeposition of iron plate in the N,N-dimethylformamide solvent and tetraethylammonium perchlorate and naphthalene as mediators at 263 K. Reduction of Fe2O3 was carried out with an isothermal heating at 598 K under hydrogen atmosphere. Fe2O3 and Fe3O4 were characterized with XRD, BET Surface area, FTIR, FESEM-EDX and TEM. The surface area of both Fe2O3 and Fe3O4 was 38-45 m 2 /g with the average particle size was 40-60 nm. The XRD result showed that the crystallinity of Fe3O4 increased with reduction time. The activity of Fe2O3 and Fe3O4 nanoparticles were tested on the adsorption of chromium (VI) at room temperature in which 30-40 % of Cr(VI) ion was adsorbed on the Fe2O3 and Fe3O4 nanoparticles.
O presente trabalho tem por objetivo propor um metodo adequado de secagem de sistemas magneticos ... more O presente trabalho tem por objetivo propor um metodo adequado de secagem de sistemas magneticos coloidais, fundamental para a analise morfologica e estrutural dos ferrofluidos, como os utilizados como agentes de contraste em Imagem por Ressonância Magnetica (IRM). Foram empregados tres metodos de secagem do ferrofluido: secagem em atmosfera de nitrogenio a 70 °C, secagem em ar a 70 °C e secagem por liofilizacao. O estudo foi feito com o farmaco Endorem™-Guerbet um ferrofluido biocompativel, utilizado como marcador em IRM e que se apresenta na forma de suspensao coloidal. O estudo foi realizado atraves das tecnicas de difracao de raios X (DRX), para observar as possiveis mudancas fisico-quimicas dos estabilizantes e evidenciar a provavel fase do oxido de ferro e mediante a microscopia eletronica de transmissao (MET) para analisar a morfologia e distribuicao das nanoparticulas. Dentre os metodos de secagem utilizados neste estudo, a secagem por liofilizacao mostrou-se mais adequada p...
Coronavirus disease 2019 (COVID-19) is the biggest health challenge of the 21st century, affectin... more Coronavirus disease 2019 (COVID-19) is the biggest health challenge of the 21st century, affecting millions of people globally. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has ignited an unprecedented effort from the scientific community in the development of new vaccines on different platforms due to the absence of a broad and effective treatment for COVID-19 or prevention strategy for SARS-CoV-2 dissemination. Based on 50 current studies selected from the main clinical trial databases, this systematic review summarizes the global race for vaccine development against COVID-19. For each study, the main intervention characteristics, the design used, and the local or global center partnerships created are highlighted. Most vaccine developments have taken place in Asia, using a viral vector method. Two purified inactivated SARS-CoV-2 vaccine candidates, an mRNA-based vaccine mRNA1273, and the chimpanzee adenoviral vaccine ChAdOx1 are currently in phase ...
The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the s... more The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the subsequent short and long-term engraftment of these cells in the niche. We performed a systematic review of the methods employed to track hematopoietic reconstitution using molecular imaging. We searched articles indexed, published prior to January 2020, in PubMed, Cochrane, and Scopus with the following keyword sequences: (Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND (Transplantation). Of 2191 articles identified, only 21 articles were included in this review, after screening and eligibility assessment. The cell source was in the majority of bone marrow from mice (43%), followed by the umbilical cord from humans (33%). The labeling agent had the follow distribution between the selected studies: 14% nanoparticle, 29% radioisotope, 19% fluorophore, 19% luciferase, and 19% animal transgenic. The type of graft used in the studies was 57% allogeneic, ...
Fibroblastic reticular cells (FRCs), usually found and isolated from the T cell zone of lymph nod... more Fibroblastic reticular cells (FRCs), usually found and isolated from the T cell zone of lymph nodes, have recently been described as much more than simple structural cells. Originally, these cells were described to form a conduit system called the “reticular fiber network” and for being responsible for transferring the lymph fluid drained from tissues through afferent lymphatic vessels to the T cell zone. However, nowadays, these cells are described as being capable of secreting several cytokines and chemokines and possessing the ability to interfere with the immune response, improving it, and also controlling lymphocyte proliferation. Here, we performed a systematic review of the several methods employed to investigate the mechanisms used by fibroblastic reticular cells to control the immune response, as well as their ability in determining the fate of T cells. We searched articles indexed and published in the last five years, between 2016 and 2020, in PubMed, Scopus, and Cochrane,...
Glioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment i... more Glioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment is mediated, in part, by the angiogenic process. New treatments involving the application of nanoformulations composed of encapsulated drugs coupled to peptide motifs that direct drugs to specific targets triggered in angiogenesis have been developed to reach and modulate different phases of this process. We performed a systematic review with the search criterion (Glioblastoma OR Glioma) AND (Therapy OR Therapeutic) AND (Nanoparticle) AND (Antiangiogenic OR Angiogenesis OR Anti-angiogenic) in Pubmed, Scopus, and Cochrane databases, in which 312 articles were identified; of these, only 27 articles were included after selection and analysis of eligibility according to the inclusion and exclusion criteria. The data of the articles were analyzed in five contexts: the characteristics of the tumor cells; the animal models used to induce GBM for antiangiogenic treatment; the composition of nanof...
This in vitro study aimed to find the best method of granulocyte isolation for subsequent labelin... more This in vitro study aimed to find the best method of granulocyte isolation for subsequent labeling with multimodal nanoparticles (magnetic and fluorescent properties) to enable detection by optical and magnetic resonance imaging (MRI) techniques. The granulocytes were obtained from venous blood samples from 12 healthy volunteers. To achieve high purity and yield, four different methods of granulocyte isolation were evaluated. The isolated granulocytes were labeled with multimodal superparamagnetic iron oxide nanoparticles (M-SPIONs) coated with dextran, and the iron load was evaluated qualitatively and quantitatively by MRI, near-infrared fluorescence (NIRF) and inductively coupled plasma mass spectrometry (ICP-MS). The best method of granulocyte isolation was Percoll with Ficoll, which showed 95.92% purity and 94% viability. After labeling with M-SPIONs, the granulocytes showed 98.0% purity with a yield of 3.5 × 106 cells/mL and more than 98.6% viability. The iron-loading value in ...
Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (G... more Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with...
Objective: To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nan... more Objective: To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nanoparticles synthesized using a one-step process. Methods: Gold nanoparticles were prepared via a co-precipitation method using polyethylene glycol, and the synthesis product was characterized. For the in vitro evaluation, a flow cytometry analysis with Annexin V and iodide propidium staining was used to assess cytotoxicity in MG-63 cells labeled with 10, 50, and 100μg/mL of nanoparticle concentration. For the in vivo evaluation, nanoparticles were administered intraperitoneally at a dose of 10mg/kg dose in 10-week-old mice. Toxicity was assessed 24 hours and 7 days after administration via histopathological analysis of various tissues, as well as through renal, hepatic, and hematopoietic evaluations. Results: Synthesized nanoparticles exhibited different hydrodynamic sizes depending on the medium: 51.27±1.62nm in water and 268.12±28.45nm (0 hour) in culture medium. They demonstrated a maximum absorbance at 520nm and a zeta potential of -8.419mV. Cellular viability exceeded 90%, with less than 3% early apoptosis, 6% late apoptosis, and 1% necrosis across all labeling conditions, indicating minimal cytotoxicity differences. Histopathological analysis highlighted the accumulation of nanoparticles in the mesentery; however, no lesions or visible agglomeration was observed in the remaining tissues. Renal, hepatic, and hematopoietic analyses showed no significant differences at any time point. Conclusion: Polyethylene glycol-coated gold nanoparticles exhibit extremely low toxicity and high biocompatibility, showing promise for future studies.
Uploads
Papers by Lionel Gamarra