Papers by Krista Delviks-frankenberry

Advances in Virology, 2011
The MLV-related retrovirus, XMRV, was recently identified and reported to be associated with both... more The MLV-related retrovirus, XMRV, was recently identified and reported to be associated with both prostate cancer and chronic fatigue syndrome. At the National Cancer Institute-Frederick, MD (NCI-Frederick), we developed highly sensitive methods to detect XMRV nucleic acids, antibodies, and replication competent virus. Analysis of XMRV-spiked samples and/or specimens from two pigtail macaques experimentally inoculated with 22Rv1 cell-derived XMRV confirmed the ability of the assays used to detect XMRV RNA and DNA, and culture isolatable virus when present, along with XMRV reactive antibody responses. Using these assays, we did not detect evidence of XMRV in blood samples (N = 134) or prostate specimens (N = 19) from two independent cohorts of patients with prostate cancer. Previous studies detected XMRV in prostate tissues. In the present study, we primarily investigated the levels of XMRV in blood plasma samples collected from patients with prostate cancer. These results demonstrate that while XMRV-related assays developed at the NCI-Frederick can readily measure XMRV nucleic acids, antibodies, and replication competent virus, no evidence of XMRV was found in the blood of patients with prostate cancer.

Journal of Virology, Jul 1, 2007
We recently observed that mutations in the human immunodeficiency type 1 (HIV-1) reverse transcri... more We recently observed that mutations in the human immunodeficiency type 1 (HIV-1) reverse transcriptase (RT) connection domain significantly increase 3-azido-3-deoxythymidine (AZT) resistance up to 536 times over wildtype (WT) RT in the presence of thymidine analog resistance mutations (TAMs). These mutations also decreased RT template switching, suggesting that they altered the balance between nucleotide excision and template RNA degradation, which in turn increased AZT resistance. Several residues in the HIV-1 connection domain contact the primer strand and form an RNase H primer grip structure that helps to position the primer-template at the RNase H and polymerase active sites. To test the hypothesis that connection domain mutations enhanced AZT resistance by influencing the RNase H primer grip, we determined the effects of alanine substitutions in RNase H primer grip residues on nucleoside RT inhibitor resistance in the context of a WT, TAM-containing, or K65R-containing polymerase domain. Ten of the 11 RNase H primer grip mutations increased AZT resistance 20 to 243 times above WT levels in the context of a TAM-containing polymerase domain. Furthermore, all mutations in the RNase H primer grip decreased template switching, suggesting that they reduced RNase H activity. These results demonstrate that mutations in the RNase H primer grip region can significantly enhance AZT resistance and support the hypothesis that mutations in the connection and RNase H domains can increase resistance by altering the RNase H primer grip region, changing interactions between RT and the template-primer complex and/or shifting the balance between the polymerase and RNase H activities.

Communications Biology, 2021
APOBEC3A (A3A) and APOBEC3B (A3B) enzymes drive APOBEC-mediated mutagenesis. Identification of fa... more APOBEC3A (A3A) and APOBEC3B (A3B) enzymes drive APOBEC-mediated mutagenesis. Identification of factors affecting the activity of these enzymes could help modulate mutagenesis and associated clinical outcomes. Here, we show that canonical and alternatively splicedA3AandA3Bisoforms produce corresponding mutagenic and non-mutagenic enzymes. Increased expression of the mutagenicA3Bisoform predicted shorter progression-free survival in bladder cancer. We demonstrate that the production of mutagenic vs. non-mutagenic A3B protein isoforms was considerably affected by inclusion/skipping of exon 5 inA3B. Furthermore, exon 5 skipping, resulting in lower levels of mutagenic A3B enzyme, could be increased in vitro. Specifically, we showed the effects of treatment with an SF3B1 inhibitor affecting spliceosome interaction with a branch point site in intron 4, or with splice-switching oligonucleotides targeting exon 5 ofA3B. Our results underscore the clinical role of A3B and implicate alternative...
Nucleic Acids Research, 2011
Molecular therapy. Nucleic acids, Aug 1, 2023

Proceedings of the National Academy of Sciences of the United States of America, Jan 2, 2007
We previously proposed that a balance between nucleotide excision and template RNA degradation pl... more We previously proposed that a balance between nucleotide excision and template RNA degradation plays an important role in nucleoside reverse transcriptase inhibitor (NRTI) resistance. To explore the predictions of this concept, we analyzed the role of patient-derived C-terminal domains of HIV-1 reverse transcriptase (RT) in NRTI resistance. We found that when the polymerase domain contained previously described thymidine analog resistance mutations, mutations in the connection domain increased resistance to 3-azido-3-deoxythymidine (AZT) from 11-fold to as much as 536-fold over wild-type RT. Mutational analysis showed that amino acid substitutions E312Q, G335C/D, N348I, A360I/V, V365I, and A376S were associated strongly with the observed increase in AZT resistance; several of these mutations also decreased RT template switching, suggesting that they alter the predicted balance between nucleotide excision and template RNA degradation. These results indicate that mutations in the C-terminal domain of RT significantly enhance clinical NRTI resistance and should be considered in genotypic and phenotypic drug resistance studies.

Proceedings of the National Academy of Sciences of the United States of America, Jan 2, 2007
We previously proposed that a balance between nucleotide excision and template RNA degradation pl... more We previously proposed that a balance between nucleotide excision and template RNA degradation plays an important role in nucleoside reverse transcriptase inhibitor (NRTI) resistance. To explore the predictions of this concept, we analyzed the role of patient-derived C-terminal domains of HIV-1 reverse transcriptase (RT) in NRTI resistance. We found that when the polymerase domain contained previously described thymidine analog resistance mutations, mutations in the connection domain increased resistance to 3'-azido-3'-deoxythymidine (AZT) from 11-fold to as much as 536-fold over wild-type RT. Mutational analysis showed that amino acid substitutions E312Q, G335C/D, N348I, A360I/V, V365I, and A376S were associated strongly with the observed increase in AZT resistance; several of these mutations also decreased RT template switching, suggesting that they alter the predicted balance between nucleotide excision and template RNA degradation. These results indicate that mutations i...

Journal of Virology, 2013
We previously identified two novel endogenous murine leukemia virus proviruses, PreXMRV-1 and Pre... more We previously identified two novel endogenous murine leukemia virus proviruses, PreXMRV-1 and PreXMRV-2, and showed that they most likely recombined during xenograft passaging of a human prostate tumor in mice to generate xenotropic murine leukemia virus-related virus (XMRV). To determine the recombination potential of PreXMRV-1 and PreXMRV-2, we examined the generation of replication-competent retroviruses (RCRs) over time in a cell culture system. We observed that either virus alone was noninfectious and the RNA transcripts of the viruses were undetectable in the blood and spleen of nude mice that carry them. To determine their potential to generate RCRs through recombination, we transfected PreXMRV-1 and PreXMRV-2 into 293T cells and used the virus produced to infect fresh cells; the presence of reverse transcriptase activity at 10 days postinfection indicated the presence of RCRs. Population sequencing of proviral DNA indicated that all RCRs contained the gag and 5′ half of pol ...

Journal of Virology, 2004
Template-switching events during reverse transcription are necessary for completion of retroviral... more Template-switching events during reverse transcription are necessary for completion of retroviral replication and recombination. Structural determinants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) that influence its template-switching frequency are not known. To identify determinants of HIV-1 RT that affect the frequency of template switching, we developed an in vivo assay in which RT template-switching events during viral replication resulted in functional reconstitution of the green fluorescent protein gene. A survey of single amino acid substitutions near the polymerase active site or deoxynucleoside triphosphate-binding site of HIV-1 RT indicated that several substitutions increased the rate of RT template switching. Several mutations associated with resistance to antiviral nucleoside analogs (K65R, L74V, E89G, Q151N, and M184I) dramatically increased RT template-switching frequencies by two- to sixfold in a single replication cycle. In contrast, su...

Journal of Virology, 2009
We previously shown that mutations in the connection (CN) subdomain of human immunodeficiency vir... more We previously shown that mutations in the connection (CN) subdomain of human immunodeficiency virus type 1 (HIV-1) subtype B reverse transcriptase (RT) increase 3′-azido-3′-deoxythymidine (AZT) resistance in the context of thymidine analog mutations (TAMs) by affecting the balance between polymerization and RNase H activity. To determine whether this balance affects drug resistance in other HIV-1 subtypes, recombinant subtype CRF01_AE was analyzed. Interestingly, CRF01_AE containing TAMs exhibited 64-fold higher AZT resistance relative to wild-type B, whereas AZT resistance of subtype B containing the same TAMs was 13-fold higher, which in turn correlated with higher levels of AZT-monophosphate (AZTMP) excision on both RNA and DNA templates. The high level of AZT resistance exhibited by CRF01_AE was primarily associated with the T400 residue in wild-type subtype AE CN subdomain. An A400T substitution in subtype B enhanced AZT resistance, increased AZTMP excision on both RNA and DNA ...

Journal of Antimicrobial Chemotherapy, 2011
Objectives: HIV-1 reverse transcriptase (RT) mutations associated with antiviral drug resistance ... more Objectives: HIV-1 reverse transcriptase (RT) mutations associated with antiviral drug resistance have been extensively characterized in the enzyme polymerase domain. Recent studies, however, have verified the involvement of the RT C-terminal domains (connection and RNase H) in drug resistance to RT inhibitors. In this work, we have characterized the correlation of recently described C-terminal domain mutations with thymidine analogue mutations (TAMs), as well as their phenotypic impact on susceptibility to zidovudine and nevirapine. Methods: HIV-1 RT sequences from Brazilian patients and from public sequence databases for which the C-terminal RT domains and treatment status were also available were retrieved and analysed for the association of C-terminal mutations and the presence of TAMs and treatment status. Several C-terminal RT mutations previously characterized were introduced by site-directed mutagenesis into an HIV-1 subtype B molecular clone in a wild-type, TAM-1 or TAM-2 pathway context. Mutants were tested for drug susceptibility to the prototypic drugs zidovudine and nevirapine. Results: Subtype B-infected patient database analysis showed that mutations N348I, A360V/T, T377M and D488E were found to be selected independently of TAMs, whereas mutations R358K, G359S, A371V, A400T, K451R and K512R increased in frequency with the number of TAMs in a dose-dependent fashion. Phenotypic analysis of C-terminal mutations showed that N348I, T369V and A371V conferred reduced susceptibility to zidovudine in the context of the TAM-1 and/or TAM-2 pathway, and also conferred dual resistance to nevirapine. Other mutations, such as D488E and Q547K, showed TAM-specific enhancement of resistance to zidovudine. Finally, mutation G359S displayed a zidovudine hypersusceptibility phenotype, both per se and when combined with A371V. Conclusions: This study demonstrates that distinct RT C-terminal mutations can act as primary or secondary drug resistance mutations, and are associated in a complex array of phenotypes with RT polymerase domain mutations.
Science, 2011
Analysis of the origin of XMRV suggests that links between the virus and human disease are due to... more Analysis of the origin of XMRV suggests that links between the virus and human disease are due to laboratory contamination.

Journal of Virology, 2013
We previously identified two novel endogenous murine leukemia virus proviruses, PreXMRV-1 and Pre... more We previously identified two novel endogenous murine leukemia virus proviruses, PreXMRV-1 and PreXMRV-2, and showed that they most likely recombined during xenograft passaging of a human prostate tumor in mice to generate xenotropic murine leukemia virus-related virus (XMRV). To determine the recombination potential of PreXMRV-1 and PreXMRV-2, we examined the generation of replication-competent retroviruses (RCRs) over time in a cell culture system. We observed that either virus alone was noninfectious and the RNA transcripts of the viruses were undetectable in the blood and spleen of nude mice that carry them. To determine their potential to generate RCRs through recombination, we transfected PreXMRV-1 and PreXMRV-2 into 293T cells and used the virus produced to infect fresh cells; the presence of reverse transcriptase activity at 10 days postinfection indicated the presence of RCRs. Population sequencing of proviral DNA indicated that all RCRs contained the gag and 5= half of pol from PreXMRV-2 and the long terminal repeat, 3= half of pol (including integrase), and env from PreXMRV-1. All crossovers were within sequences of at least 9 identical nucleotides, and crossovers within each of two selected recombination zones of 415 nucleotides (nt) in the 5= untranslated region and 982 nt in pol were required to generate RCRs. A recombinant with the same genotype as XMRV was not detected, and our analysis indicates that the probability of generating an identical RCR is vanishingly small. In addition, the studies indicate that the process of RCR formation is primarily driven by selection for viable cis and trans elements from the parental proviruses.

ABSTRACTAPOBEC3A (A3A) and APOBEC3B (A3B) enzymes drive APOBEC-mediated mutagenesis, but the unde... more ABSTRACTAPOBEC3A (A3A) and APOBEC3B (A3B) enzymes drive APOBEC-mediated mutagenesis, but the understanding of the regulation of their mutagenic activity remains limited. Here, we showed that mutagenic and non-mutagenic A3A and A3B enzymes are produced by canonical and alternatively spliced A3A and A3B isoforms, respectively. Notably, increased expression of the canonical A3B isoform, which encodes the mutagenic A3B enzyme, predicted shorter progression-free survival of bladder cancer patients. Expression of the mutagenic A3B isoform was reduced by exon 5 skipping, generating a non-mutagenic A3B isoform. The exon 5 skipping, which was dependent on the interaction between SF3B1 splicing factor and weak branch point sites in intron 4, could be enhanced by an SF3B1 inhibitor, decreasing the production of the mutagenic A3B enzyme. Thus, our results underscore the role of A3B, especially in bladder cancer, and implicate alternative splicing of A3B as a mechanism and therapeutic target to ...

Viruses
Mammals have developed clever adaptive and innate immune defense mechanisms to protect against in... more Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins—A3G, A3F, A3H, and A3D—restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent protea...
Journal of Molecular Biology

Journal of virology
Homologous recombination and deletions occur during retroviral replication when reverse transcrip... more Homologous recombination and deletions occur during retroviral replication when reverse transcriptase switches templates. While recombination occurs solely by intermolecular template switching (between copackaged RNAs), deletions can occur by an intermolecular or an intramolecular template switch (within the same RNA). To directly compare the rates of intramolecular and intermolecular template switching, two spleen necrosis virus-based vectors were constructed. Each vector contained a 110-bp direct repeat that was previously shown to delete at a high rate. The 110-bp direct repeat was flanked by two different sets of restriction site markers. These vectors were used to form heterozygotic virions containing RNAs of each parental vector, from which recombinant viruses were generated. By analyses of the markers flanking the direct repeats in recombinant and nonrecombinant proviruses, the rates of intramolecular and intermolecular template switching were determined. The results of these analyses indicate that intramolecular template switching is much more efficient than intermolecular template switching and that direct repeat deletions occur primarily through intramolecular template switching events. These studies also indicate that retroviral recombination occurs within a distinct viral subpopulation and exhibits high negative interference, whereby the selection of one recombination event increases the probability that a second recombination event will be observed.
Molecular Therapy - Nucleic Acids
Uploads
Papers by Krista Delviks-frankenberry