This study examines the effects of high-volume micro-steel fibers (MSF) content on the mechanical... more This study examines the effects of high-volume micro-steel fibers (MSF) content on the mechanical properties, fracture parameters, and ductility of ultra-high performance fiber reinforced concrete (UHPFRCs). The MSFs used in this experiment had an aspect ratio of 37.5 with average length of 6 mm. The investigated parameters include very low water/binder (w/b) ratio and fiber content. Sixteen UHPFRC mixes were examined, eight mixes were made with w/b of 0.12 and eight fiber contents (0%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5, 4%) while the other eight mixes were made with the same fiber contents but with w/b of 0.14. The UHPFRC mixes were examined for various strengths (compressive, splitting tensile, flexural), elastic modulus, and fracture parameters. The experimental results showed that the mixture with 4% of MSFs content and 0.12 w/b ratio exhibited a compressive strength of more than 160 MPa, splitting tensile strength higher than 12 MPa, and modulus of elasticity greater than 43 GPa. Moreover, the results also demonstrated that with increasing MSFs content from 0 to 4% the load-displacement behavior, ductility, and all other fracture parameters were improved significantly.
The aim of this paper was to examine the feasibility of using nanoparticles of SiO2 (nanosilica) ... more The aim of this paper was to examine the feasibility of using nanoparticles of SiO2 (nanosilica) to improve the performance of recycled aggregate concrete (RAC) containing recycled aggregate (RA) derived from processing construction and demolition waste of concrete buildings. The examined properties include compressive strength, splitting tensile strength, and water absorption. The study also includes examining the microstructure of RA and RAC with and without nanoparticles of SiO2. In total, nine mixes were investigated. Two mixes with RA contents of 50% and 100% were investigated and for each RA content; three mixes were prepared with three different nanoparticles dosages 0.4%, 0.8%, and 1.2% (by mass of cement). A control mix with natural aggregate (NA) was also prepared for comparison reasons. The results show that nanoparticles of silica can improve the compressive strength, tensile strength, reduce the water absorption, and modify the microstructure of RAC.
Imperial College, London, UK. He is a member of fib task group 9.3 (Composites for construction) ... more Imperial College, London, UK. He is a member of fib task group 9.3 (Composites for construction) and the leader of several EU funded multi-partner projects including '' Anagennisi''. His research interests include structural concrete behaviour, earthquake engineering, composites for construction and construction innovation.
This study examines the effects of high-volume micro-steel fibers (MSF) content on the mechanical... more This study examines the effects of high-volume micro-steel fibers (MSF) content on the mechanical properties, fracture parameters, and ductility of ultra-high performance fiber reinforced concrete (UHPFRCs). The MSFs used in this experiment had an aspect ratio of 37.5 with average length of 6 mm. The investigated parameters include very low water/binder (w/b) ratio and fiber content. Sixteen UHPFRC mixes were examined, eight mixes were made with w/b of 0.12 and eight fiber contents (0%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5, 4%) while the other eight mixes were made with the same fiber contents but with w/b of 0.14. The UHPFRC mixes were examined for various strengths (compressive, splitting tensile, flexural), elastic modulus, and fracture parameters. The experimental results showed that the mixture with 4% of MSFs content and 0.12 w/b ratio exhibited a compressive strength of more than 160 MPa, splitting tensile strength higher than 12 MPa, and modulus of elasticity greater than 43 GPa. Moreover, the results also demonstrated that with increasing MSFs content from 0 to 4% the load-displacement behavior, ductility, and all other fracture parameters were improved significantly.
The aim of this paper was to examine the feasibility of using nanoparticles of SiO2 (nanosilica) ... more The aim of this paper was to examine the feasibility of using nanoparticles of SiO2 (nanosilica) to improve the performance of recycled aggregate concrete (RAC) containing recycled aggregate (RA) derived from processing construction and demolition waste of concrete buildings. The examined properties include compressive strength, splitting tensile strength, and water absorption. The study also includes examining the microstructure of RA and RAC with and without nanoparticles of SiO2. In total, nine mixes were investigated. Two mixes with RA contents of 50% and 100% were investigated and for each RA content; three mixes were prepared with three different nanoparticles dosages 0.4%, 0.8%, and 1.2% (by mass of cement). A control mix with natural aggregate (NA) was also prepared for comparison reasons. The results show that nanoparticles of silica can improve the compressive strength, tensile strength, reduce the water absorption, and modify the microstructure of RAC.
Imperial College, London, UK. He is a member of fib task group 9.3 (Composites for construction) ... more Imperial College, London, UK. He is a member of fib task group 9.3 (Composites for construction) and the leader of several EU funded multi-partner projects including '' Anagennisi''. His research interests include structural concrete behaviour, earthquake engineering, composites for construction and construction innovation.
Uploads
Papers by Khaleel Younis