The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts t... more The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The G s -mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the G q /G 11 -mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the α subunits of G q and G 11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Gα q /Gα 11 -deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that G q /G 11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth.
Annual Review of Pharmacology and Toxicology, 2008
Pharmacological doses of nicotinic acid induce a profound change in the plasma levels of various ... more Pharmacological doses of nicotinic acid induce a profound change in the plasma levels of various lipids and lipoproteins. The ability of nicotinic acid to strongly increase the plasma concentration of high-density lipoprotein (HDL) cholesterol has in recent years led to an increased interest in the pharmacological potential of nicotinic acid. There is increasing evidence that nicotinic acid alone or in addition to LDL cholesterol-lowering drugs can reduce the progression of atherosclerosis and reduce the risk of cardiovascular events. The clinical use of nicotinic acid is, however, hindered by harmless but unpleasant side effects, especially by a strong cutaneous vasodilation called flushing. The recent discovery of the G protein-coupled receptor GPR109A (HM74A or PUMA-G) as a receptor for nicotinic acid has allowed for better understanding of the mechanisms underlying the metabolic and vascular effects of nicotinic acid. On the basis of recent progress in understanding the pharmacological effects of nicotinic acid, new strategies are in development to better exploit the pharmacological potential of nicotinic acid. New drugs acting via the nicotinic acid receptor or related receptors, as well as new co-medications that suppress unwanted effects of nicotinic acid, will most likely be introduced as new therapeutic options in the treatment of dyslipidemia and the prevention of cardiovascular diseases.
Pharmakologische Dosen von Nikotinsäure führen zu einer anhaltenden Veränderung des Lipid- und Li... more Pharmakologische Dosen von Nikotinsäure führen zu einer anhaltenden Veränderung des Lipid- und Lipoproteinprofils im Plasma. Insbesondere die Fähigkeit von Nikotinsäure, die Konzentration von HDL-Cholesterin deutlich zu erhöhen, hat in den letzten Jahren zu einem gesteigerten Interesse an dem pharmakologischen Potenzial der Nikotinsäure geführt. Eingeschränkt wird der klinische Einsatz von Nikotinsäure durch meist harmlose, aber unangenehme unerwünschte Wirkungen, insbesondere durch das nach oraler Nikotinsäuregabe auftretende Flush-Phänomen. Mit der Entdeckung des Nikotinsäure-Rezeptors ist es gelungen, die Mechanismen der metabolischen und vaskulären Effekte der Nikotinsäure besser zu verstehen. Gegenwärtig werden verschiedene Strategien entwickelt und validiert, mit deren Hilfe das pharmakologische Potenzial von Nikotinsäure besser ausgeschöpft werden kann. Durch neuartige Komedikationen sowie durch die Entwicklung neuer Wirkstoffe, die als Agonisten am Nikotinsäurerezeptor wirken, werden in Zukunft möglicherweise neue Therapieoptionen auf der Basis der pharmakologischen Nikotinsäurewirkungen zur Verfügung stehen.
Lactate is an important metabolic intermediate released by skeletal muscle and other organs inclu... more Lactate is an important metabolic intermediate released by skeletal muscle and other organs including the adipose tissue, which converts glucose into lactate under the influence of insulin. Here we show that lactate activates the G protein-coupled receptor GPR81, which is expressed in adipocytes and mediates antilipolytic effects through G i -dependent inhibition of adenylyl cyclase. Using GPR81-deficient mice, we demonstrate that the receptor is not involved in the regulation of lipolysis during intensive exercise. However, insulin-induced inhibition of lipolysis and insulin-induced decrease in adipocyte cAMP levels were strongly reduced in mice lacking GPR81, although insulin-dependent release of lactate by adipocytes was comparable between wild-type and GPR81-deficient mice. Thus, lactate and its receptor GPR81 unexpectedly function in an autocrine and paracrine loop to mediate insulin-induced antilipolytic effects. These data show that lactate can directly modulate metabolic processes in a hormone-like manner, and they reveal a new mechanism underlying the antilipolytic effects of insulin.
The antidyslipidemic drug nicotinic acid and the antipsoriatic drug monomethyl fumarate induce cu... more The antidyslipidemic drug nicotinic acid and the antipsoriatic drug monomethyl fumarate induce cutaneous flushing through activation of G protein-coupled receptor 109A (GPR109A). Flushing is a troublesome side effect of nicotinic acid, but may be a direct reflection of the wanted effects of monomethyl fumarate. Here we analyzed the mechanisms underlying GPR109A-mediated flushing and show that both Langerhans cells and keratinocytes express GPR109A in mice. Using cell ablation approaches and transgenic cell type-specific GPR109A expression in Gpr109a -/mice, we have provided evidence that the early phase of flushing depends on GPR109A expressed on Langerhans cells, whereas the late phase is mediated by GPR109A expressed on keratinocytes. Interestingly, the first phase of flushing was blocked by a selective cyclooxygenase-1 (COX-1) inhibitor, and the late phase was sensitive to a selective COX-2 inhibitor. Both monomethyl fumarate and nicotinic acid induced PGE 2 formation in isolated keratinocytes through activation of GPR109A and COX-2. Thus, the early and late phases of the GPR109A-mediated cutaneous flushing reaction involve different epidermal cell types and prostanoid-forming enzymes. These data will help to guide new efficient approaches to mitigate nicotinic acid-induced flushing and may help to exploit the potential antipsoriatic effects of GPR109A agonists in the skin.
The hydroxy-carboxylic acid (HCA) receptors HCA(1), HCA(2), and HCA(3) were previously known as G... more The hydroxy-carboxylic acid (HCA) receptors HCA(1), HCA(2), and HCA(3) were previously known as GPR81, GPR109A, and GPR109B, respectively, or as the nicotinic acid receptor family. They form a cluster of G protein-coupled receptors with high sequence homology. Recently, intermediates of energy metabolism, all HCAs, have been reported as endogenous ligands for each of these receptors. The HCA receptors are predominantly expressed on adipocytes and mediate the inhibition of lipolysis by coupling to G(i)-type proteins. HCA(1) is activated by lactate, HCA(2) by the ketone body 3-hydroxy-butyrate, and HCA(3) by hydroxylated β-oxidation intermediates, especially 3-hydroxy-octanoic acid. Both HCA(2) and HCA(3) are part of a negative feedback loop which keeps the release of fat stores in check under starvation conditions, whereas HCA(1) plays a role in the antilipolytic (fat-conserving) effect of insulin. HCA(2) was first discovered as the molecular target of the antidyslipidemic drug nicotinic acid (or niacin). Many synthetic agonists have since been designed for HCA(2) and HCA(3), but the development of a new, improved HCA-targeted drug has not been successful so far, despite a number of clinical studies. Recently, it has been shown that the major side effect of nicotinic acid, skin flushing, is mediated by HCA(2) receptors on keratinocytes, as well as on Langerhans cells in the skin. In this chapter, we summarize the latest developments in the field of HCA receptor research, with emphasis on (patho)physiology, receptor pharmacology, major ligand classes, and the therapeutic potential of HCA ligands.
G-protein-coupled receptors (GPCRs) are the most versatile receptor family as they have the abili... more G-protein-coupled receptors (GPCRs) are the most versatile receptor family as they have the ability to respond to chemically diverse ligands. Despite intensive efforts during the past two decades, there are still more than 100 orphan GPCRs for which endogenous ligands are unknown. Recently, GPR109A, GPR109B and GPR81, which form a GPCR subfamily, have been deorphanized. The physiological ligands of these receptors are the ketone body 3-hydroxy-butyrate, the metabolite 2hydroxy-propanoate (lactate) as well as the b-oxidation intermediate 3-hydroxy-octanoate. Thus, this receptor subfamily is activated by hydroxy-carboxylic acid ligands which are intermediates of energy metabolism. All three receptors are predominantly expressed in adipocytes and mediate antilipolytic effects. In this article, we propose that the hydroxy-carboxylic acid structure of their endogenous ligands is the defining property of this receptor subfamily and that hydroxy-carboxylic acid receptors function as metabolic sensors which fine-tune the regulation of metabolic pathways.
The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts t... more The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The G s -mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the G q /G 11 -mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the α subunits of G q and G 11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Gα q /Gα 11 -deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that G q /G 11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth.
Annual Review of Pharmacology and Toxicology, 2008
Pharmacological doses of nicotinic acid induce a profound change in the plasma levels of various ... more Pharmacological doses of nicotinic acid induce a profound change in the plasma levels of various lipids and lipoproteins. The ability of nicotinic acid to strongly increase the plasma concentration of high-density lipoprotein (HDL) cholesterol has in recent years led to an increased interest in the pharmacological potential of nicotinic acid. There is increasing evidence that nicotinic acid alone or in addition to LDL cholesterol-lowering drugs can reduce the progression of atherosclerosis and reduce the risk of cardiovascular events. The clinical use of nicotinic acid is, however, hindered by harmless but unpleasant side effects, especially by a strong cutaneous vasodilation called flushing. The recent discovery of the G protein-coupled receptor GPR109A (HM74A or PUMA-G) as a receptor for nicotinic acid has allowed for better understanding of the mechanisms underlying the metabolic and vascular effects of nicotinic acid. On the basis of recent progress in understanding the pharmacological effects of nicotinic acid, new strategies are in development to better exploit the pharmacological potential of nicotinic acid. New drugs acting via the nicotinic acid receptor or related receptors, as well as new co-medications that suppress unwanted effects of nicotinic acid, will most likely be introduced as new therapeutic options in the treatment of dyslipidemia and the prevention of cardiovascular diseases.
Pharmakologische Dosen von Nikotinsäure führen zu einer anhaltenden Veränderung des Lipid- und Li... more Pharmakologische Dosen von Nikotinsäure führen zu einer anhaltenden Veränderung des Lipid- und Lipoproteinprofils im Plasma. Insbesondere die Fähigkeit von Nikotinsäure, die Konzentration von HDL-Cholesterin deutlich zu erhöhen, hat in den letzten Jahren zu einem gesteigerten Interesse an dem pharmakologischen Potenzial der Nikotinsäure geführt. Eingeschränkt wird der klinische Einsatz von Nikotinsäure durch meist harmlose, aber unangenehme unerwünschte Wirkungen, insbesondere durch das nach oraler Nikotinsäuregabe auftretende Flush-Phänomen. Mit der Entdeckung des Nikotinsäure-Rezeptors ist es gelungen, die Mechanismen der metabolischen und vaskulären Effekte der Nikotinsäure besser zu verstehen. Gegenwärtig werden verschiedene Strategien entwickelt und validiert, mit deren Hilfe das pharmakologische Potenzial von Nikotinsäure besser ausgeschöpft werden kann. Durch neuartige Komedikationen sowie durch die Entwicklung neuer Wirkstoffe, die als Agonisten am Nikotinsäurerezeptor wirken, werden in Zukunft möglicherweise neue Therapieoptionen auf der Basis der pharmakologischen Nikotinsäurewirkungen zur Verfügung stehen.
Lactate is an important metabolic intermediate released by skeletal muscle and other organs inclu... more Lactate is an important metabolic intermediate released by skeletal muscle and other organs including the adipose tissue, which converts glucose into lactate under the influence of insulin. Here we show that lactate activates the G protein-coupled receptor GPR81, which is expressed in adipocytes and mediates antilipolytic effects through G i -dependent inhibition of adenylyl cyclase. Using GPR81-deficient mice, we demonstrate that the receptor is not involved in the regulation of lipolysis during intensive exercise. However, insulin-induced inhibition of lipolysis and insulin-induced decrease in adipocyte cAMP levels were strongly reduced in mice lacking GPR81, although insulin-dependent release of lactate by adipocytes was comparable between wild-type and GPR81-deficient mice. Thus, lactate and its receptor GPR81 unexpectedly function in an autocrine and paracrine loop to mediate insulin-induced antilipolytic effects. These data show that lactate can directly modulate metabolic processes in a hormone-like manner, and they reveal a new mechanism underlying the antilipolytic effects of insulin.
The antidyslipidemic drug nicotinic acid and the antipsoriatic drug monomethyl fumarate induce cu... more The antidyslipidemic drug nicotinic acid and the antipsoriatic drug monomethyl fumarate induce cutaneous flushing through activation of G protein-coupled receptor 109A (GPR109A). Flushing is a troublesome side effect of nicotinic acid, but may be a direct reflection of the wanted effects of monomethyl fumarate. Here we analyzed the mechanisms underlying GPR109A-mediated flushing and show that both Langerhans cells and keratinocytes express GPR109A in mice. Using cell ablation approaches and transgenic cell type-specific GPR109A expression in Gpr109a -/mice, we have provided evidence that the early phase of flushing depends on GPR109A expressed on Langerhans cells, whereas the late phase is mediated by GPR109A expressed on keratinocytes. Interestingly, the first phase of flushing was blocked by a selective cyclooxygenase-1 (COX-1) inhibitor, and the late phase was sensitive to a selective COX-2 inhibitor. Both monomethyl fumarate and nicotinic acid induced PGE 2 formation in isolated keratinocytes through activation of GPR109A and COX-2. Thus, the early and late phases of the GPR109A-mediated cutaneous flushing reaction involve different epidermal cell types and prostanoid-forming enzymes. These data will help to guide new efficient approaches to mitigate nicotinic acid-induced flushing and may help to exploit the potential antipsoriatic effects of GPR109A agonists in the skin.
The hydroxy-carboxylic acid (HCA) receptors HCA(1), HCA(2), and HCA(3) were previously known as G... more The hydroxy-carboxylic acid (HCA) receptors HCA(1), HCA(2), and HCA(3) were previously known as GPR81, GPR109A, and GPR109B, respectively, or as the nicotinic acid receptor family. They form a cluster of G protein-coupled receptors with high sequence homology. Recently, intermediates of energy metabolism, all HCAs, have been reported as endogenous ligands for each of these receptors. The HCA receptors are predominantly expressed on adipocytes and mediate the inhibition of lipolysis by coupling to G(i)-type proteins. HCA(1) is activated by lactate, HCA(2) by the ketone body 3-hydroxy-butyrate, and HCA(3) by hydroxylated β-oxidation intermediates, especially 3-hydroxy-octanoic acid. Both HCA(2) and HCA(3) are part of a negative feedback loop which keeps the release of fat stores in check under starvation conditions, whereas HCA(1) plays a role in the antilipolytic (fat-conserving) effect of insulin. HCA(2) was first discovered as the molecular target of the antidyslipidemic drug nicotinic acid (or niacin). Many synthetic agonists have since been designed for HCA(2) and HCA(3), but the development of a new, improved HCA-targeted drug has not been successful so far, despite a number of clinical studies. Recently, it has been shown that the major side effect of nicotinic acid, skin flushing, is mediated by HCA(2) receptors on keratinocytes, as well as on Langerhans cells in the skin. In this chapter, we summarize the latest developments in the field of HCA receptor research, with emphasis on (patho)physiology, receptor pharmacology, major ligand classes, and the therapeutic potential of HCA ligands.
G-protein-coupled receptors (GPCRs) are the most versatile receptor family as they have the abili... more G-protein-coupled receptors (GPCRs) are the most versatile receptor family as they have the ability to respond to chemically diverse ligands. Despite intensive efforts during the past two decades, there are still more than 100 orphan GPCRs for which endogenous ligands are unknown. Recently, GPR109A, GPR109B and GPR81, which form a GPCR subfamily, have been deorphanized. The physiological ligands of these receptors are the ketone body 3-hydroxy-butyrate, the metabolite 2hydroxy-propanoate (lactate) as well as the b-oxidation intermediate 3-hydroxy-octanoate. Thus, this receptor subfamily is activated by hydroxy-carboxylic acid ligands which are intermediates of energy metabolism. All three receptors are predominantly expressed in adipocytes and mediate antilipolytic effects. In this article, we propose that the hydroxy-carboxylic acid structure of their endogenous ligands is the defining property of this receptor subfamily and that hydroxy-carboxylic acid receptors function as metabolic sensors which fine-tune the regulation of metabolic pathways.
Uploads
Papers by Kashan Ahmed