Full-scale numerical prediction of the aerothermal flow in gas turbine engines are currently limi... more Full-scale numerical prediction of the aerothermal flow in gas turbine engines are currently limited by high computational costs. The approach presented here intends the use of different specialized flow solvers based on the Reynolds-averaged Navier-Stokes equations as well as large-eddy simulations for different parts of the flow domain, running simultaneously and exchanging information at the interfaces. This study documents the development of the interface and proves its accuracy and efficiency with simple test cases. Furthermore, its application to a turbomachinery application is demonstrated.
Full-scale numerical prediction of the aerothermal flow in gas turbine engines are currently limi... more Full-scale numerical prediction of the aerothermal flow in gas turbine engines are currently limited by high computational costs. The approach presented here intends the use of different specialized flow solvers based on the Reynolds-averaged Navier-Stokes equations as well as large-eddy simulations for different parts of the flow domain, running simultaneously and exchanging information at the interfaces. This study documents the development of the interface and proves its accuracy and efficiency with simple test cases. Furthermore, its application to a turbomachinery application is demonstrated.
Uploads
Papers by Jorg Schluter