It remains to be understood how biological motion is hierarchically computed, from discrimination... more It remains to be understood how biological motion is hierarchically computed, from discrimination of local "life motion" animacy to global dynamic body perception. Here, we addressed this functional separation of the correlates of the perception of life motion, defined as characteristic for the local motion of parts of living beings, from perception of global motion of a body. We hypothesized that life motion processing can be isolated, by using a single dot motion perceptual decision paradigm featuring the biomechanical details of local realistic motion of a single joint. To ensure that we were indeed tackling processing of biological motion properties we used a discrimination instead of detection task. We discovered using representation similarity analysis that two key early dorsal and two ventral stream regions (visual motion selective hMT+ and V3A, extrastriate body area EBA and a region within fusiform gyrus FFG) showed robust and separable signals related to encoding of life motion and global motion. These signals reflected two independent processing stages, as revealed by representation dissimilarity analysis and deconvolution of fMRI responses to each motion pattern. This study showed that higher level pSTS encodes both classes of biological motion in a similar way, revealing a higher-level integrative stage, reflecting scale independent biological motion perception. Our results reveal a two-stage framework for neural computation of biological motion, with an independent contribution of dorsal and ventral regions for the initial stage.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, Jan 10, 2015
Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurop... more Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched sti...
Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the huma... more Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopicallydefined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.
Seizure prediction for untreatable epileptic patients, one of the major challenges of present neu... more Seizure prediction for untreatable epileptic patients, one of the major challenges of present neuroinformatics researchers, will allow a substantial improvement in their safety and quality of life. Neural networks, because of their plasticity and degrees of freedom, seem to be a good approach to consider the enormous variability of physiological systems. Several architectures and training algorithms are comparatively proposed in this work showing that it is possible to find an adequate network for one patient, but care must be taken to generalize to other patients. It is claimed that each patient will have his (her) own seizure prediction algorithms.
It remains to be understood how biological motion is hierarchically computed, from discrimination... more It remains to be understood how biological motion is hierarchically computed, from discrimination of local "life motion" animacy to global dynamic body perception. Here, we addressed this functional separation of the correlates of the perception of life motion, defined as characteristic for the local motion of parts of living beings, from perception of global motion of a body. We hypothesized that life motion processing can be isolated, by using a single dot motion perceptual decision paradigm featuring the biomechanical details of local realistic motion of a single joint. To ensure that we were indeed tackling processing of biological motion properties we used a discrimination instead of detection task. We discovered using representation similarity analysis that two key early dorsal and two ventral stream regions (visual motion selective hMT+ and V3A, extrastriate body area EBA and a region within fusiform gyrus FFG) showed robust and separable signals related to encoding of life motion and global motion. These signals reflected two independent processing stages, as revealed by representation dissimilarity analysis and deconvolution of fMRI responses to each motion pattern. This study showed that higher level pSTS encodes both classes of biological motion in a similar way, revealing a higher-level integrative stage, reflecting scale independent biological motion perception. Our results reveal a two-stage framework for neural computation of biological motion, with an independent contribution of dorsal and ventral regions for the initial stage.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, Jan 10, 2015
Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurop... more Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched sti...
Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the huma... more Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopicallydefined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.
Seizure prediction for untreatable epileptic patients, one of the major challenges of present neu... more Seizure prediction for untreatable epileptic patients, one of the major challenges of present neuroinformatics researchers, will allow a substantial improvement in their safety and quality of life. Neural networks, because of their plasticity and degrees of freedom, seem to be a good approach to consider the enormous variability of physiological systems. Several architectures and training algorithms are comparatively proposed in this work showing that it is possible to find an adequate network for one patient, but care must be taken to generalize to other patients. It is claimed that each patient will have his (her) own seizure prediction algorithms.
Uploads
Papers by João Duarte