Papers by Jennifer Gerton

PLoS Biology, 2004
In eukaryotic cells, cohesin holds sister chromatids together until they separate into daughter c... more In eukaryotic cells, cohesin holds sister chromatids together until they separate into daughter cells during mitosis. We have used chromatin immunoprecipitation coupled with microarray analysis (ChIP chip) to produce a genome-wide description of cohesin binding to meiotic and mitotic chromosomes of Saccharomyces cerevisiae. A computer program, PeakFinder, enables flexible, automated identification and annotation of cohesin binding peaks in ChIP chip data. Cohesin sites are highly conserved in meiosis and mitosis, suggesting that chromosomes share a common underlying structure during different developmental programs. These sites occur with a semiperiodic spacing of 11 kb that correlates with AT content. The number of sites correlates with chromosome size; however, binding to neighboring sites does not appear to be cooperative. We observed a very strong correlation between cohesin sites and regions between convergent transcription units. The apparent incompatibility between transcription and cohesin binding exists in both meiosis and mitosis. Further experiments reveal that transcript elongation into a cohesin-binding site removes cohesin. A negative correlation between cohesin sites and meiotic recombination sites suggests meiotic exchange is sensitive to the chromosome structure provided by cohesin. The genome-wide view of mitotic and meiotic cohesin binding provides an important framework for the exploration of cohesins and cohesion in other genomes.

Molecular and cellular biology, 2006
In the yeast Saccharomyces cerevisiae, certain genomic regions have very high levels of meiotic r... more In the yeast Saccharomyces cerevisiae, certain genomic regions have very high levels of meiotic recombination (hot spots). The hot spot activity associated with the HIS4 gene requires the Bas1p transcription factor. To determine whether this relationship between transcription factor binding and hot spot activity is general, we used DNA microarrays to map all genomic Bas1p binding sites and to map the frequency of meiosis-specific double-strand DNA breaks (as an estimate of the recombination activity) of all genes in both wild-type and bas1 strains. We identified sites of Bas1p-DNA interactions upstream of 71 genes, many of which are involved in histidine and purine biosynthesis. Our analysis of recombination activity in wild-type and bas1 strains showed that the recombination activities of some genes with Bas1p binding sites were dependent on Bas1p (as observed for HIS4), whereas the activities of other genes with Bas1p binding sites were unaffected or were repressed by Bas1p. These...
Uploads
Papers by Jennifer Gerton