Papers by Jean de Dieu Nambajimana
Journal of Geophysical Research: Biogeosciences, 2020
SOC and TN stocks differed and correlated significantly with land-use age, the C stocks correla... more SOC and TN stocks differed and correlated significantly with land-use age, the C stocks correlates significantly with land-use change compared the TN stocks. A significant SOC stock loss (17.96%, 29.80 and 37.66%) occurred in converting natural forests to planted forests, shrub and grasslands. Land-use change and land-use age have influenced soil C and N stocks, moreover Natural forests are better in restoration of degraded lands.
The raw data of manuscript "Runoff and erosive responses to different land-cover types in se... more The raw data of manuscript "Runoff and erosive responses to different land-cover types in semiarid environment: Scale effects and controlling factors"

Atmosphere, 2021
Adoption of crop residue amendments has been increasingly recommended as an effective management ... more Adoption of crop residue amendments has been increasingly recommended as an effective management practice for mitigating greenhouse gas emissions while enhancing soil fertility, thereby increasing crop production. However, the effect of biochar and straw on nitrous oxide (N2O) and methane (CH4) emissions in soils of differing pH remains poorly understood. Three treatments (control (i.e., no amendment), maize straw, and biochar derived from maize straw) were therefore established separately in soils with different pH levels, classified as follows: acidic, neutral, and alkaline. N2O and CH4 were investigated using a static chamber–gas chromatography system during 57 days of a mesocosm study. The results showed that cumulative N2O emissions were significantly higher in acidic soils than in other experimental soils, with the values ranging from 7.48 to 11.3 kg N ha−1, while CH4 fluxes ranged from 0.060 to 0.089 kg C ha−1, with inconclusive results. However, a weak negative correlation w...

Soil aggregate stability is a key indicator of soil quality and susceptibility to water erosion. ... more Soil aggregate stability is a key indicator of soil quality and susceptibility to water erosion. The water level fluctuation zone (WLFZ) of Three Gorges Reservoir (TGR) experiences hydraulic disturbances induced by rainfall, reservoir wave, and water-level fluctuation. Soil aggregate in this region has a unique mechanism of disintegration different from other terrestrial soils. The traditional methods of soil aggregate stability measurement cannot reveal the complex external factors of the soil in the WLFZ. In the present study, an attempt has been made to establish an approach mimicking the real situation in the WLFZ to deeply understand the effects of water movement and periodical wetting on soil aggregate stability in the WLFZ. The soil samples from different elevations were allowed to stay under wetting and wet-shaking conditions for 3 and 81 min, followed by a quantitative separation of disintegrated aggregates by wet-sieving. The mean differences between wetting and wet-shakin...

The Three Gorges Reservoir (TGR) in China is the largest hydroelectric project in the world, but ... more The Three Gorges Reservoir (TGR) in China is the largest hydroelectric project in the world, but the threat of sediment affecting ecological sustainability of the reservoir is a topic of concern. Sediment particle-size distribution (PSD) is informative in understanding sediment transport dynamics and biochemical functions. It is, therefore, important to quantitatively characterize the distribution of sediment particles. In the current study, fractal theory is applied to determine the PSD of suspended sediment in the TGR. The results show that the volumetric fractal dimension ( D v ) exhibits a significant seasonal difference (p D ( q ) – q , and multifractal singularity spectrum, f [ α ( q ) ] – α ( q ) , were calculated for each suspended sediment sample. Thereafter, the parameters, D(0), D(1), D(2), α(0), Δα(q), and Δ f [ α ( q ) ] , were determined to characterize the PSD. As a result, the coarser suspended sediment during the wet season is characterised by a more complex PSD pa...

Sustainability
Aggregate is the basic unit of soil structure, which is crucial to the sustainability of soil sys... more Aggregate is the basic unit of soil structure, which is crucial to the sustainability of soil system functions such as structural stability and Fertility Maintenance. Three Gorges Dam (TGD) has extensively led to a dramatic hydrological regime alteration, which may consequently affect various soil physical properties. The aim of this study was to investigate the long-run temporal variation of soil aggregate stability as induced by water-level fluctuations in the riparian zone of the Three Gorges Reservoir (TGR). Sampling plots were established along different elevations considering the interval of 5 m, starting from 150 m to 175 m. A Laser Diffraction based analysis that allows the measurement of soil aggregate stability after the removal of soil organic matter helped to particularly study the effect of external factors on soil aggregate stability of the study area. In addition, wet-sieving method considering the effect of chemical binding agents was used to quantify aggregate stabi...

Sustainability
The Kenya Great Rift Valley (KGRV) region unique landscape comprises of mountainous terrain, larg... more The Kenya Great Rift Valley (KGRV) region unique landscape comprises of mountainous terrain, large valley-floor lakes, and agricultural lands bordered by extensive Arid and Semi-Arid Lands (ASALs). The East Africa (EA) region has received high amounts of rainfall in the recent past as evidenced by the rising lake levels in the GRV lakes. In Kenya, few studies have quantified soil loss at national scales and erosion rates information on these GRV lakes’ regional basins within the ASALs is lacking. This study used the Revised Universal Soil Loss Equation (RUSLE) model to estimate soil erosion rates between 1990 and 2015 in the Great Rift Valley region of Kenya which is approximately 84.5% ASAL. The mean erosion rates for both periods was estimated to be tolerable (6.26 t ha−1 yr−1 and 7.14 t ha−1 yr−1 in 1990 and 2015 respectively) resulting in total soil loss of 116 Mt yr−1 and 132 Mt yr−1 in 1990 and 2015 respectively. Approximately 83% and 81% of the erosive lands in KGRV fell unde...

Sustainability
Rwanda has experienced accelerated soil erosion as a result of unsustainable human activities and... more Rwanda has experienced accelerated soil erosion as a result of unsustainable human activities and changes in land use. Therefore, this study aimed at applying the RUSLE (Revised Universal Soil Loss Equation) model using GIS (Geographical Information System) and remote sensing to assess water erosion in Rwanda, focusing on the erosion-prone lands for the time span 2000 to 2015. The estimated mean annual soil losses were 48.6 t ha−1 y−1 and 39.2 t ha−1 y−1 in 2000 and 2015, respectively, resulting in total nationwide losses of approximately 110 and 89 million tons. Over the 15 years, 34.6% of the total area of evaluated LULC (land use/land cover) types have undergone changes. The highest mean soil loss of 91.6 t ha−1 y−1 occurred in the area changing from grassland to forestland (0.5%) while a mean soil loss of 10.0 t ha−1 y−1 was observed for grassland converting to cropland (4.4%). An attempt has been made to identify the embedded driving forces of soil erosion in Rwanda. As a resul...
Journal of Mountain Science

Sustainability
Rwanda has experienced accelerated soil erosion as a result of unsustainable human activities and... more Rwanda has experienced accelerated soil erosion as a result of unsustainable human activities and changes in land use. Therefore, this study aimed at applying the RUSLE (Revised Universal Soil Loss Equation) model using GIS (Geographical Information System) and remote sensing to assess water erosion in Rwanda, focusing on the erosion-prone lands for the time span 2000 to 2015. The estimated mean annual soil losses were 48.6 t ha−1 y−1 and 39.2 t ha−1 y−1 in 2000 and 2015, respectively, resulting in total nationwide losses of approximately 110 and 89 million tons. Over the 15 years, 34.6% of the total area of evaluated LULC (land use/land cover) types have undergone changes. The highest mean soil loss of 91.6 t ha−1 y−1 occurred in the area changing from grassland to forestland (0.5%) while a mean soil loss of 10.0 t ha−1 y−1 was observed for grassland converting to cropland (4.4%). An attempt has been made to identify the embedded driving forces of soil erosion in Rwanda. As a resul...
Drafts by Jean de Dieu Nambajimana

Sedimentary geochemistry mediated by a specific hydrological regime in the water level uctuation zone of the Three Gorges Reservoir, China, 2022
The water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) acts as an important ... more The water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) acts as an important sink for inflowing suspended sediment loads over the inundation periods following regular dam operations. This study depicts the sedimentary geochemical dynamics along a sedimentary profile based on the determined chronology and explores its links to the specific hydrological regime created by dam flow regulation and riverine seasonal suspended sediment dynamics. A compact 345-cm-long sediment core was extracted near the base water level (145.3 m) from the WLFZ of the TGR and sectioned at 5-cm intervals. Extracted sediment subsamples were analyzed for grain size composition, organic matter (OM), total nitrogen (TN), and geochemical elements (Na, K, Ca, Mg, Pb, Zn, Ni, Co, Mn, Cr, Fe, and Cu). The sediment core chronology was determined using 137Cs elemental analysis. Sedimentary geochemistry and grain size properties of extracted sediment core exhibited greater variations during initial submergence years till the first complete impoundment of the TGR (2006–2010). Afterward (2011–2013), although upstream inflowing suspended sediments and reservoir water level were comparable, sediment deposition and concentrations of sedimentary geochemical constituents showed considerably fewer variations. Seasonal variations in sediment deposition and geochemical composition were also observed during the rainy (October–April) and dry (May–September) seasons, in addition to annual variations. Grain size, OM, and other sediment geochemical constituents all had significant correlations with each other and with sediment core depth. The concentrations of geochemical elements in various sediment stratigraphic layers exhibited staggering associations with each other and were dependent on each other in several ways. The arrangement of geochemical elements in various stratigraphic layers of the extracted core illustrated amalgamation with inputs from upstream seasonal suspended sediment dynamics and reservoir water levels. During shortened submergence periods and higher input sediment loads, geochemical elements demonstrated impulsive distributions. Alternatively, during longer submergence periods, elemental distributions were relatively uniform attributed to higher settling time to deposit according to grain size and geochemical affinities. Higher suspended sediment loads in association with seasonal floods also resulted in rough sediment deposition patterns, imparting variations in the distributions of geochemical elements. Interim mediations in geochemical element concentrations are associated with seasonal distal flash floods and local terrace bank collapses, which generate significant amounts of distal sediment loads that are quickly deposited and are not sorted hydrodynamically. Overall, although a specific mechanism was devised to circumvent the siltation process, a considerable amount of sediment is trapped at pre-dam sites. In addition, siltation caused nutrients and geochemical elements’ enrichment.
Uploads
Papers by Jean de Dieu Nambajimana
Drafts by Jean de Dieu Nambajimana