Glioblastoma (GB) is the most common type of glioma, which is distinguished by high mortality. Du... more Glioblastoma (GB) is the most common type of glioma, which is distinguished by high mortality. Due to the rapid progression of the tumor and drug resistance, the treatment is often ineffective. The development of novel therapies in a big part concerns the application of anti-cancer agents already used in clinical practice, unfortunately often with limited effects. This could be overcome through the use of compounds that possess chemosensitizing properties. In our previous work, it has been shown that neobavaisoflavone (NBIF) enhances the in vitro activity of doxorubicin in GB cells. The aim of this study was a further investigation of the possible chemosensitizing effects of this isoflavone. The experimental panel involving image cytometry techniques, such as count assay, examination of mitochondrial membrane potential, Annexin V assay, and cell cycle analysis, was performed in human glioblastoma U-87 MG cells and normal human astrocytes (NHA) treated with NBIF, doxorubicin, etoposi...
Cobalamin (vitamin B12) deficiency is one of the major factors causing degenerative changes in th... more Cobalamin (vitamin B12) deficiency is one of the major factors causing degenerative changes in the nervous system and, thus, various neurological and psychiatric symptoms. The underlying cellular mechanism of this phenomenon is not yet fully understood. An accumulation of senescent astrocytes has been shown to contribute to a wide range of pathologies of the nervous system, including neurodegenerative disorders. This study aimed to investigate whether cobalamin deficiency triggers astrosenescence. After inducing cobalamin deficiency in normal human astrocytes in vitro, we examined biomarkers of cellular senescence: SA-β-gal, p16INK4A, and p21Waf1/Cip1 and performed cell nuclei measurements. The obtained results may contribute to an increase in the knowledge of the cellular effects of cobalamin deficiency in the context of astrocytes. In addition, the presented data suggest a potential causative agent of astrosenescence that has not been proven to date.
The most important biological function of vitamin B12 is to accomplish DNA synthesis, which is ne... more The most important biological function of vitamin B12 is to accomplish DNA synthesis, which is necessary for cell division. Cobalamin deficiency may be especially acute for rapidly dividing cells, such as glioblastoma cells. Therefore, cobalamin antagonists offer a medicinal potential for developing anti-glioma agents. In the present study, we developed an in vitro model of cobalamin deficiency in glioblastoma cells. Long-term treatment of cells with the cobalamin analogue, hydroxycobalamin [c-lactam] (HCCL) was applied to induce an increase of hypocobalaminemia biomarker. Cytometric assays demonstrated that vitamin B12 promoted glioblastoma cells proliferation, whereas the treatment of cells with HCCL caused a dramatic inhibition of cell proliferation and an induction of cell cycle arrest at the G2/M phase. Vitamin B12 counteracted all the observed effects of HCCL. In the in silico study, we characterized the molecular interactions between HCCL and transcobalamin II (TCII). We have...
Fluphenazine and perphenazine as a phenothiazine-class antipsychotic drugs are widely used to tre... more Fluphenazine and perphenazine as a phenothiazine-class antipsychotic drugs are widely used to treat psychoses and schizophrenia, however their use is associated with significant side effects such as extrapyramidal symptoms as well as ocular and skin disorders. The aim of this study was to examine the effect of fluphenazine and perphenazine on cell viability, melanogenesis and antioxidant defense system in normal human melanocytes. It has been shown that both phenothiazines induce concentration-dependent loss in cell viability. The value of EC₅₀. was calculated to be 1.24 and 2.76 μM for fluphenazine and perphenazine, respectively. Fluphenazine in concentration of 1.0 μM and perphenazine in concentrations of 1.0 and 3.0 μM inhibied melanogenesis and decreased microphthalmia-associated transcription factor content. To study the effect of both analyzed drugs on antioxidant defense system in melanocytes, the level of hydrogen peroxide and the activities of antioxidant enzymes: superoxid...
Transition metal coordination compounds play an important role in the treatment of neoplastic dis... more Transition metal coordination compounds play an important role in the treatment of neoplastic diseases. However, due to their low selectivity and bioavailability, as well as the frequently occurring phenomenon of drug resistance, new chemical compounds that could overcome these phenomena are still being sought. The solution seems to be the synthesis of new metal complexes conjugated with drug carriers, e.g., dendrimers. Numerous literature data have shown that dendrimers improve the bioavailability of the obtained metal complexes, solving the problem of their poor solubility and stability in an aqueous environment and also breaking down inborn and acquired drug resistance. Therefore, the aim of this study was to synthesize a novel imidazole platinum(II) complex conjugated with and without the second-generation PAMAM dendrimer (PtMet2–PAMAM and PtMet2, respectively) and to evaluate its antitumor activity. Cell viability studies indicated that PtMet2–PAMAM exhibited higher cytotoxic a...
Fluoroquinolones cause phototoxic reactions, manifested as different types of skin lesions, inclu... more Fluoroquinolones cause phototoxic reactions, manifested as different types of skin lesions, including hyperpigmentation. The disturbances of melanogenesis indicate that fluoroquinolones may affect cellular processes in melanocytes. It has been reported that these antibiotics may bind with melanin and accumulate in pigmented cells. The study aimed to examine the changes in melanogenesis in human normal melanocytes exposed to UVA radiation and treated with lomefloxacin and moxifloxacin, the most and the least fluoroquinolone, respectively. The obtained results demonstrated that both tested fluoroquinolones inhibited melanogenesis through a decrease in tyrosinase activity and down-regulation of tyrosinase and microphthalmia-associated transcription factor production. Only lomefloxacin potentiated UVA-induced melanogenesis. Under UVA irradiation lomefloxacin significantly enhanced melanin content and tyrosinase activity in melanocytes, although the drug did not cause an increased expres...
Minocycline is a semisynthetic tetracycline antibiotic. In addition to its antibacterial activity... more Minocycline is a semisynthetic tetracycline antibiotic. In addition to its antibacterial activity, minocycline shows many non-antibiotic, beneficial effects, including antioxidative action. The property is responsible, e.g., for anti-inflammatory, neuroprotective, and cardioprotective effects of the drug. However, long-term pharmacotherapy with minocycline may lead to hyperpigmentation of the skin. The reasons for the pigmentation disorders include the deposition of the drug and its metabolites in melanin-containing cells and the stimulation of melanogenesis. The adverse drug reaction raises a question about the influence of the drug on melanocyte homeostasis. The study aimed to assess the effect of minocycline on redox balance in human normal melanocytes HEMn-LP exposed to hydrogen peroxide and UVA radiation. The obtained results indicate that minocycline induced oxidative stress in epidermal human melanocytes. The drug inhibited cell proliferation, decreased the level of reduced t...
Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types ... more Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types of drug-induced photosensitivity: photoallergy and phototoxicity. Currently, the number of photosensitization cases is constantly increasing due to excessive exposure to sunlight, the aesthetic value of a tan, and the increasing number of photosensitizing substances in food, dietary supplements, and pharmaceutical and cosmetic products. The risk of photosensitivity reactions relates to several hundred externally and systemically administered drugs, including nonsteroidal anti-inflammatory, cardiovascular, psychotropic, antimicrobial, antihyperlipidemic, and antineoplastic drugs. Photosensitivity reactions often lead to hospitalization, additional treatment, medical management, decrease in patient’s comfort, and the limitations of drug usage. Mechanisms of drug-induced photosensitivity are complex and are observed at a cellular, molecular, and biochemical level. Photoexcitation and photoc...
Doxycycline is a semisynthetic, second generation tetracycline. Currently, it is used, among othe... more Doxycycline is a semisynthetic, second generation tetracycline. Currently, it is used, among others, in the treatment of acne and skin infections. Moreover, doxycycline has many valuable nonantibiotic properties, including anti-inflammatory, immunosuppressive and anticancer effects. Recent studies showed that the drug had the ability to inhibit the adhesion and migration of cancer cells, as well as affected their growth and proliferation and induced apoptosis. The purpose of this study was to examine the antimelanoma effect of doxycycline. The obtained results demonstrated that doxycycline decreased the viability and inhibited the proliferation of human melanoma cells, proportionally to the drug concentration and the treatment time. It was stated that doxycycline disturbed the homeostasis of the cells by lowering intracellular level of reduced thiols. In addition, the treatment changed the cell cycle profile and triggered the DNA fragmentation. Mitochondria of melanoma cells exposed to the drug had lowered membrane potential, which indicated cells apoptosis. Finally, doxycycline induced the externalization phosphatidylserinea well-known hallmark of apoptosis, confirmed by results of annexin V test. The presented study contributes to the increase of knowledge about nonantibacterial action of doxycycline, including the influence on human cancer cells and indicates new potential possibility of effective treatment of malignant melanoma.
Malignant melanoma is the cause of 80% of deaths in skin cancer patients. Treatment of melanoma i... more Malignant melanoma is the cause of 80% of deaths in skin cancer patients. Treatment of melanoma in the 4th stage of clinical advancement, in which inoperable metastasis occur, does not provide sufficient effects. Ketoprofen has phototoxic properties and it can be used as a new treatment option for skin cancers as a part of photochemotherapy. The present study was designed to investigate whether ketoprofen in combination with UVA induces cytotoxic, anti-proliferative and pro-apoptotic effects on melanoma cells. It was stated that co-treatment with 1.0 mM ketoprofen and UVA irradiation disturbed homeostasis of C32 melanoma cells by lowering its vitality (decrease of GSH level). Contrary to C32 cells, melanocytes showed low sensitivity to ketoprofen and UVA radiation, pointing selectivity in the mode of action towards melanoma cells. Co-treatment with ketoprofen and UVA irradiation has cytotoxic and anti-proliferative and pro-apoptotic effect on C32. The co-treatment triggered the DNA fragmentation and changed the cell cycle in C32 cells. In conclusion, it could be stated that local application of ketoprofen in combination with UVA irradiation may be used to support the treatment of melanoma and creates the possibility of reducing the risk of cancer recurrence and metastasis.
Phototoxicity of fluoroquinolones is connected with oxidative stress induction. Lomefloxacin (8-h... more Phototoxicity of fluoroquinolones is connected with oxidative stress induction. Lomefloxacin (8-halogenated derivative) is considered the most phototoxic fluoroquinolone and moxifloxacin (8-methoxy derivative) the least. Melanin pigment may protect cells from oxidative damage. On the other hand, fluoroquinolone–melanin binding may lead to accumulation of drugs and increase their toxicity to skin. The study aimed to examine the antioxidant defense system status in normal melanocytes treated with lomefloxacin and moxifloxacin and exposed to UV-A radiation. The obtained results demonstrated that UV-A radiation enhanced only the lomefloxacin-induced cytotoxic effect in tested cells. It was found that fluoroquinolones alone and with UV-A radiation decreased superoxide dismutase (SOD) activity and SOD1 expression. UV-A radiation enhanced the impact of moxifloxacin on hydrogen peroxide-scavenging enzymes. In turn, lomefloxacin alone increased the activity and the expression of catalase (CA...
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Melanoma, the most dangerous type of cutaneous neoplasia, contributes to about 75% of all skin ca... more Melanoma, the most dangerous type of cutaneous neoplasia, contributes to about 75% of all skin cancer-related deaths. Thus, searching for new melanoma treatment options is an important field of study. The current study was designed to assess whether the condition of mild and low-dose UVA radiation augments the lomefloxacin-mediated cytotoxic, growth-inhibitory and pro-apoptotic effect of the drug in melanoma cancer cells through excessive oxidative stress generation. C32 amelanotic and COLO829 melanotic (BRAF-mutant) melanoma cell lines were used as an experimental model system. The combined exposure of cells to both lomefloxacin and UVA irradiation caused higher alterations of redox signalling pathways, as shown by intracellular reactive oxygen species overproduction and endogenous glutathione depletion when compared to non-irradiated but lomefloxacin-treated melanoma cells. The obtained results also showed that lomefloxacin decreased both C32 and COLO829 cells’ viability in a conc...
Cobalamin deficiency affects human physiology with sequelae ranging from mild fatigue to severe n... more Cobalamin deficiency affects human physiology with sequelae ranging from mild fatigue to severe neuropsychiatric abnormalities. The cellular and molecular aspects of the nervous system disorders associated with hypovitaminosis B12 remain largely unknown. Growing evidence indicates that astrogliosis is an underlying component of a wide range of neuropathologies. Previously, we developed an in vitro model of cobalamin deficiency in normal human astrocytes (NHA) by culturing the cells with c-lactam of hydroxycobalamin (c-lactam OH-Cbl). We revealed a non-apoptotic activation of caspases (3/7, 8, 9) in cobalamin-deficient NHA, which may suggest astrogliosis. The aim of the current study was to experimentally verify this hypothesis. We indicated an increase in the cellular expression of two astrogliosis markers: glial fibrillary acidic protein and vimentin in cobalamin-deficient NHA using Western blot analysis and immunocytochemistry with confocal laser scanning microscopy. In the next s...
Oxytetracycline is a broad-spectrum antibiotic, used in dermatology and veterinary medicine. Like... more Oxytetracycline is a broad-spectrum antibiotic, used in dermatology and veterinary medicine. Like other tetracyclines, it may evoke skin phototoxic reactions related to generation of reactive oxygen species (ROS). Melanins are biopolymers synthesised in melanocyteshighly specialised cells, localised in the basal layer of epidermis. Production of melanin is a defence mechanism against harmful effects of UV radiation, ROS and many chemical substances, including drugs. In the present study the influence of oxytetracycline and UVA radiation on darkly pigmented melanocytes viability, the melanogenesis process and the activity of antioxidant enzymes were analysed. The obtained results show that oxytetracycline decreases cell viability in a dose-dependent manner. It has also been stated that UVA radiation as well as simultaneous exposure to oxytetracycline and UVA radiation reduce melanocytes viability. The tested drug alone exhibits little effect on antioxidant enzymes activity and has no influence on the synthesis of melanin. However, simultaneous exposure of the cells to oxytetracycline and UVA radiation causes an increase of SOD and GPx activity, a decrease of CAT activity as well as stimulates melanogenesis. The obtained results suggest that phototoxicity of oxytetracycline towards normal human melanocytes depends on both time of UVA exposure and the drug concentration.
Tetracyclines belong to antimicrobial classes with the highest consumption in veterinary medicine... more Tetracyclines belong to antimicrobial classes with the highest consumption in veterinary medicine and agriculture, which leads to the contamination of the environment and food products, as well as to antibiotic resistance and adverse drug reactions. Chloro-derivatives of tetracyclines are thought to be relatively more phototoxic than others and belong to the most frequently cited drugs as photosensitizers. Melanins are heterogenous biopolymers determining skin, hair and eye colour. They are biosynthesized in a multistep process in melanocytes. Melanins, besides photoprotective and antioxidant properties, may also contribute to adverse skin drug reactions, which involve e.g. hyperpigmentation disorders and phototoxic reactions. Furthermore, they have the ability to form a drug-melanin complex, which leads to deposition of the drug or its metabolites in pigmented tissues. The aim of the study was to examine the ability of chlortetracycline to form a complex with melanin, as well as the effect of the drug on viability, antioxidant defence system and melanogenesis in normal human epidermal melanocytes exposed to the UVA radiation. The obtained results show for the first time that chlortetracycline forms a complex with melanin polymers, which creates a possibility of the drug accumulation in pigmented tissues. A simultaneous exposition of normal melanocytes to chlortetracycline and to the UVA radiation decreases cell viability, proportionally to the drug concentration and the irradiation time. The phototoxic effect appears to be related to the induction of oxidative stress in melanocytes, mainly through an increase of SOD and a decrease of the CAT activity. Chlortetracycline itself does not influence the melanin content or the activity of tyrosinase. The UVA radiation appeared to be a conditioning factor stimulating melanogenesis, whereas the presence of the drug augmented this effect. Keywords photolysis, generating e.g. superoxide and hydrogen peroxide [14;15]. Melanins, besides their photoprotective and antioxidant properties, may also contribute to adverse skin drug reactions, which involve e.g. hyperpigmentation disorders and phototoxic reactions. Pigmentary changes can be caused by drug-induced melanin synthesis and postinflammatory alterations, secondary to phototoxicity [16]. Moreover, hyperpigmentation of
Fluoroquinolone antibiotics induce cytotoxicity in various cancer cell lines and may therefore re... more Fluoroquinolone antibiotics induce cytotoxicity in various cancer cell lines and may therefore represent a potentially important source of novel anticancer agents. The aim of the present study was to examine the effect of ciprofloxacin on the viability, redox balance, apoptosis, expression of p53, Bax and Bcl-2, cell cycle distribution and DNA fragmentation of triple-negative MDA-MB-231 breast cancer cells. The results of the present study demonstrated that ciprofloxacin decreases cell viability in a dose-and time-dependent manner. The half maximal inhibitory concentration values of ciprofloxacin in MDA-MB-231 cells following treatment for 24, 48 and 72 h were 0.83, 0.14 and 0.03 µmol/ml, respectively. Furthermore, it was demonstrated that ciprofloxacin altered the redox signaling pathway, as determined by intracellular glutathione depletion. The results of Annexin V/propidium iodide staining revealed that ciprofloxacin triggered the apoptosis of MDA-MB-231 cells. Furthermore, cipfloxacin treatment stimulated the loss of the mitochondrial transmembrane potential via the Bax/Bcl-2-dependent pathway, thus inducing apoptosis. Ciprofloxacin induced cell cycle arrest at the S-phase; therefore it was hypothesized that ciprofloxacin inhibits topoisomerase II. Oligonucleosomal DNA fragmentation and the elevation of p53 expression were observed in the present study, indicating that this late-apoptotic event may be mediated by the p53-dependent pathway. Therefore, the results of the current study provide important molecular data concerning the cellular cascade, which may explain the cytotoxicity induced by ciprofloxacin in human triple-negative breast cancer cells, thus providing a novel insight into the therapeutic properties of this drug.
Fluoroquinolones were shown to be cytotoxic towards various cancer cell lines, thus representing ... more Fluoroquinolones were shown to be cytotoxic towards various cancer cell lines, thus representing a potentially important source of new anticancer agents. The aim of the present study was to examine the effect of moxifloxacin on cell viability, redox balance and apoptosis in both amelanotic-C32 and melanotic-COLO829 melanoma cells. Herein, we found that moxifloxacin decreases the viability of C32 and COLO829 cells in concentration-and time-dependent manner. The EC 50 values were found to be as 0.16 mM, 0.12 mM and 0.11 mM for amelanotic C32 cells as well as 0.40 mM, 0.22 mM and 0.15 mM for COLO829 cells and 24, 48, 72 h incubation time, respectively. Moxifloxacin have also induced the intracellular disulphide imbalance and apoptosis as shown by externalization of phosphatidylserine, caspase-3/7 activation, G 2 /M cell cycle arrest and DNA fragmentation. The mechanism of apoptosis was related to the loss of mitochondrial membrane potential. This is the first study that characterized cellular and molecular mechanism underlying moxifloxacin cytotoxic and proapoptotic effect towards melanoma cells. Although further studies are required to establish efficacy of moxifloxacin against melanoma in clinical practice, the results of current study strongly suggest, that moxifloxacin is promising candidate as a repositioned drug for anti-melanoma treatment.
Ototoxicity is well-documented but not fully understood undesirable side effect of aminoglycoside... more Ototoxicity is well-documented but not fully understood undesirable side effect of aminoglycoside antibiotic, kanamycin. Kanamycin is capable of binding to melanin biopolymers-natural pigments of the skin, hair, and eyes. Melanin-producing cells, melanocytes, are also present in the inner ear and are known to be necessary for normal hearing. It was considered that melanin content in the inner ear may influence aminoglycoside-induced ototoxic effect. The impact of kanamycin on melanocytes homeostasis may thus play role in the antibiotic-induced ototoxic effect. Previously, we demonstrated that kanamycin disturbs homeostasis in light-pigmented melanocytes. To investigate if/how melanization contributes to this phenomenon, the study using in vitro model of dark-pigmented melanocytes is required. Spectrophotometric measurements and electron paramagnetic resonance (EPR) spectroscopy analysis were performed. Kanamycin induced a concentration-dependent loss in HEMn-DP melanocytes viability. The value of IC 50 was estimated to be 5.0 mM. Modulation of the activity of analyzed antioxidant enzymes and increased production of free radicals as well as the decrease of the melanin content were observed. Our results confirmed that kanamycin generates oxidative stress in melanocytes. The increased level of free radicals caused by kanamycin may be responsible for the imbalance of antioxidant defense and the reduction of melanin content in melanocytes. The role of melanin in the mechanism of kanamycin-induced hearing impairment was discussed and the obtained results were compared with the previously demonstrated data concerning light-pigmented melanocytes.
Glioblastoma multiforme (GBM) is the most common and high aggressive malignant brain tumor. Despi... more Glioblastoma multiforme (GBM) is the most common and high aggressive malignant brain tumor. Despite evolving oncology treatment and novel chemotherapeutic agents the median survival of patients diagnosed with GBM is only 12-15 months. This grim fact highlights necessity to identify new drugs that could improve the effectiveness of GBM patients treatment. MIM1 is a specific low molecular Mcl-1 protein inhibitor able to induce Mcl-1-dependent cancer cells death. The aim of this study was to examine the effect of MIM1 as well as MIM1 and temozolomide (TMZ) mixture on cell viability, apoptosis and cell cycle progression in human U87MG glioblastoma cells. Cell viability was performed by the WST-1 assay. Mitochondrial membrane potential, Annexin V assay, DNA fragmentation and cell cycle distribution were determined by fluorescence image cytometer NucleoCounter NC-3000. The obtained results show that MIM1 and MIM1/TMZ mixture decrease glioblastoma cells viability in a doseand time-dependent manner. Moreover, the exposure of U87MG cells to MIM1 and MIM1/TMZ mixture causes mitochondrial dysfunction as well as DNA fragmentation and cell cycle arrest at G 2 /M phase. This study provides for the first time convincing evidence that BH3 mimetic MIM1, which inhibits Mcl-1 antiapoptotic protein may be an efficacious molecule able to induction of apoptosis and sensitize GBM cells to alkylating agents.
Glioblastoma (GB) is the most common type of glioma, which is distinguished by high mortality. Du... more Glioblastoma (GB) is the most common type of glioma, which is distinguished by high mortality. Due to the rapid progression of the tumor and drug resistance, the treatment is often ineffective. The development of novel therapies in a big part concerns the application of anti-cancer agents already used in clinical practice, unfortunately often with limited effects. This could be overcome through the use of compounds that possess chemosensitizing properties. In our previous work, it has been shown that neobavaisoflavone (NBIF) enhances the in vitro activity of doxorubicin in GB cells. The aim of this study was a further investigation of the possible chemosensitizing effects of this isoflavone. The experimental panel involving image cytometry techniques, such as count assay, examination of mitochondrial membrane potential, Annexin V assay, and cell cycle analysis, was performed in human glioblastoma U-87 MG cells and normal human astrocytes (NHA) treated with NBIF, doxorubicin, etoposi...
Cobalamin (vitamin B12) deficiency is one of the major factors causing degenerative changes in th... more Cobalamin (vitamin B12) deficiency is one of the major factors causing degenerative changes in the nervous system and, thus, various neurological and psychiatric symptoms. The underlying cellular mechanism of this phenomenon is not yet fully understood. An accumulation of senescent astrocytes has been shown to contribute to a wide range of pathologies of the nervous system, including neurodegenerative disorders. This study aimed to investigate whether cobalamin deficiency triggers astrosenescence. After inducing cobalamin deficiency in normal human astrocytes in vitro, we examined biomarkers of cellular senescence: SA-β-gal, p16INK4A, and p21Waf1/Cip1 and performed cell nuclei measurements. The obtained results may contribute to an increase in the knowledge of the cellular effects of cobalamin deficiency in the context of astrocytes. In addition, the presented data suggest a potential causative agent of astrosenescence that has not been proven to date.
The most important biological function of vitamin B12 is to accomplish DNA synthesis, which is ne... more The most important biological function of vitamin B12 is to accomplish DNA synthesis, which is necessary for cell division. Cobalamin deficiency may be especially acute for rapidly dividing cells, such as glioblastoma cells. Therefore, cobalamin antagonists offer a medicinal potential for developing anti-glioma agents. In the present study, we developed an in vitro model of cobalamin deficiency in glioblastoma cells. Long-term treatment of cells with the cobalamin analogue, hydroxycobalamin [c-lactam] (HCCL) was applied to induce an increase of hypocobalaminemia biomarker. Cytometric assays demonstrated that vitamin B12 promoted glioblastoma cells proliferation, whereas the treatment of cells with HCCL caused a dramatic inhibition of cell proliferation and an induction of cell cycle arrest at the G2/M phase. Vitamin B12 counteracted all the observed effects of HCCL. In the in silico study, we characterized the molecular interactions between HCCL and transcobalamin II (TCII). We have...
Fluphenazine and perphenazine as a phenothiazine-class antipsychotic drugs are widely used to tre... more Fluphenazine and perphenazine as a phenothiazine-class antipsychotic drugs are widely used to treat psychoses and schizophrenia, however their use is associated with significant side effects such as extrapyramidal symptoms as well as ocular and skin disorders. The aim of this study was to examine the effect of fluphenazine and perphenazine on cell viability, melanogenesis and antioxidant defense system in normal human melanocytes. It has been shown that both phenothiazines induce concentration-dependent loss in cell viability. The value of EC₅₀. was calculated to be 1.24 and 2.76 μM for fluphenazine and perphenazine, respectively. Fluphenazine in concentration of 1.0 μM and perphenazine in concentrations of 1.0 and 3.0 μM inhibied melanogenesis and decreased microphthalmia-associated transcription factor content. To study the effect of both analyzed drugs on antioxidant defense system in melanocytes, the level of hydrogen peroxide and the activities of antioxidant enzymes: superoxid...
Transition metal coordination compounds play an important role in the treatment of neoplastic dis... more Transition metal coordination compounds play an important role in the treatment of neoplastic diseases. However, due to their low selectivity and bioavailability, as well as the frequently occurring phenomenon of drug resistance, new chemical compounds that could overcome these phenomena are still being sought. The solution seems to be the synthesis of new metal complexes conjugated with drug carriers, e.g., dendrimers. Numerous literature data have shown that dendrimers improve the bioavailability of the obtained metal complexes, solving the problem of their poor solubility and stability in an aqueous environment and also breaking down inborn and acquired drug resistance. Therefore, the aim of this study was to synthesize a novel imidazole platinum(II) complex conjugated with and without the second-generation PAMAM dendrimer (PtMet2–PAMAM and PtMet2, respectively) and to evaluate its antitumor activity. Cell viability studies indicated that PtMet2–PAMAM exhibited higher cytotoxic a...
Fluoroquinolones cause phototoxic reactions, manifested as different types of skin lesions, inclu... more Fluoroquinolones cause phototoxic reactions, manifested as different types of skin lesions, including hyperpigmentation. The disturbances of melanogenesis indicate that fluoroquinolones may affect cellular processes in melanocytes. It has been reported that these antibiotics may bind with melanin and accumulate in pigmented cells. The study aimed to examine the changes in melanogenesis in human normal melanocytes exposed to UVA radiation and treated with lomefloxacin and moxifloxacin, the most and the least fluoroquinolone, respectively. The obtained results demonstrated that both tested fluoroquinolones inhibited melanogenesis through a decrease in tyrosinase activity and down-regulation of tyrosinase and microphthalmia-associated transcription factor production. Only lomefloxacin potentiated UVA-induced melanogenesis. Under UVA irradiation lomefloxacin significantly enhanced melanin content and tyrosinase activity in melanocytes, although the drug did not cause an increased expres...
Minocycline is a semisynthetic tetracycline antibiotic. In addition to its antibacterial activity... more Minocycline is a semisynthetic tetracycline antibiotic. In addition to its antibacterial activity, minocycline shows many non-antibiotic, beneficial effects, including antioxidative action. The property is responsible, e.g., for anti-inflammatory, neuroprotective, and cardioprotective effects of the drug. However, long-term pharmacotherapy with minocycline may lead to hyperpigmentation of the skin. The reasons for the pigmentation disorders include the deposition of the drug and its metabolites in melanin-containing cells and the stimulation of melanogenesis. The adverse drug reaction raises a question about the influence of the drug on melanocyte homeostasis. The study aimed to assess the effect of minocycline on redox balance in human normal melanocytes HEMn-LP exposed to hydrogen peroxide and UVA radiation. The obtained results indicate that minocycline induced oxidative stress in epidermal human melanocytes. The drug inhibited cell proliferation, decreased the level of reduced t...
Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types ... more Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types of drug-induced photosensitivity: photoallergy and phototoxicity. Currently, the number of photosensitization cases is constantly increasing due to excessive exposure to sunlight, the aesthetic value of a tan, and the increasing number of photosensitizing substances in food, dietary supplements, and pharmaceutical and cosmetic products. The risk of photosensitivity reactions relates to several hundred externally and systemically administered drugs, including nonsteroidal anti-inflammatory, cardiovascular, psychotropic, antimicrobial, antihyperlipidemic, and antineoplastic drugs. Photosensitivity reactions often lead to hospitalization, additional treatment, medical management, decrease in patient’s comfort, and the limitations of drug usage. Mechanisms of drug-induced photosensitivity are complex and are observed at a cellular, molecular, and biochemical level. Photoexcitation and photoc...
Doxycycline is a semisynthetic, second generation tetracycline. Currently, it is used, among othe... more Doxycycline is a semisynthetic, second generation tetracycline. Currently, it is used, among others, in the treatment of acne and skin infections. Moreover, doxycycline has many valuable nonantibiotic properties, including anti-inflammatory, immunosuppressive and anticancer effects. Recent studies showed that the drug had the ability to inhibit the adhesion and migration of cancer cells, as well as affected their growth and proliferation and induced apoptosis. The purpose of this study was to examine the antimelanoma effect of doxycycline. The obtained results demonstrated that doxycycline decreased the viability and inhibited the proliferation of human melanoma cells, proportionally to the drug concentration and the treatment time. It was stated that doxycycline disturbed the homeostasis of the cells by lowering intracellular level of reduced thiols. In addition, the treatment changed the cell cycle profile and triggered the DNA fragmentation. Mitochondria of melanoma cells exposed to the drug had lowered membrane potential, which indicated cells apoptosis. Finally, doxycycline induced the externalization phosphatidylserinea well-known hallmark of apoptosis, confirmed by results of annexin V test. The presented study contributes to the increase of knowledge about nonantibacterial action of doxycycline, including the influence on human cancer cells and indicates new potential possibility of effective treatment of malignant melanoma.
Malignant melanoma is the cause of 80% of deaths in skin cancer patients. Treatment of melanoma i... more Malignant melanoma is the cause of 80% of deaths in skin cancer patients. Treatment of melanoma in the 4th stage of clinical advancement, in which inoperable metastasis occur, does not provide sufficient effects. Ketoprofen has phototoxic properties and it can be used as a new treatment option for skin cancers as a part of photochemotherapy. The present study was designed to investigate whether ketoprofen in combination with UVA induces cytotoxic, anti-proliferative and pro-apoptotic effects on melanoma cells. It was stated that co-treatment with 1.0 mM ketoprofen and UVA irradiation disturbed homeostasis of C32 melanoma cells by lowering its vitality (decrease of GSH level). Contrary to C32 cells, melanocytes showed low sensitivity to ketoprofen and UVA radiation, pointing selectivity in the mode of action towards melanoma cells. Co-treatment with ketoprofen and UVA irradiation has cytotoxic and anti-proliferative and pro-apoptotic effect on C32. The co-treatment triggered the DNA fragmentation and changed the cell cycle in C32 cells. In conclusion, it could be stated that local application of ketoprofen in combination with UVA irradiation may be used to support the treatment of melanoma and creates the possibility of reducing the risk of cancer recurrence and metastasis.
Phototoxicity of fluoroquinolones is connected with oxidative stress induction. Lomefloxacin (8-h... more Phototoxicity of fluoroquinolones is connected with oxidative stress induction. Lomefloxacin (8-halogenated derivative) is considered the most phototoxic fluoroquinolone and moxifloxacin (8-methoxy derivative) the least. Melanin pigment may protect cells from oxidative damage. On the other hand, fluoroquinolone–melanin binding may lead to accumulation of drugs and increase their toxicity to skin. The study aimed to examine the antioxidant defense system status in normal melanocytes treated with lomefloxacin and moxifloxacin and exposed to UV-A radiation. The obtained results demonstrated that UV-A radiation enhanced only the lomefloxacin-induced cytotoxic effect in tested cells. It was found that fluoroquinolones alone and with UV-A radiation decreased superoxide dismutase (SOD) activity and SOD1 expression. UV-A radiation enhanced the impact of moxifloxacin on hydrogen peroxide-scavenging enzymes. In turn, lomefloxacin alone increased the activity and the expression of catalase (CA...
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Melanoma, the most dangerous type of cutaneous neoplasia, contributes to about 75% of all skin ca... more Melanoma, the most dangerous type of cutaneous neoplasia, contributes to about 75% of all skin cancer-related deaths. Thus, searching for new melanoma treatment options is an important field of study. The current study was designed to assess whether the condition of mild and low-dose UVA radiation augments the lomefloxacin-mediated cytotoxic, growth-inhibitory and pro-apoptotic effect of the drug in melanoma cancer cells through excessive oxidative stress generation. C32 amelanotic and COLO829 melanotic (BRAF-mutant) melanoma cell lines were used as an experimental model system. The combined exposure of cells to both lomefloxacin and UVA irradiation caused higher alterations of redox signalling pathways, as shown by intracellular reactive oxygen species overproduction and endogenous glutathione depletion when compared to non-irradiated but lomefloxacin-treated melanoma cells. The obtained results also showed that lomefloxacin decreased both C32 and COLO829 cells’ viability in a conc...
Cobalamin deficiency affects human physiology with sequelae ranging from mild fatigue to severe n... more Cobalamin deficiency affects human physiology with sequelae ranging from mild fatigue to severe neuropsychiatric abnormalities. The cellular and molecular aspects of the nervous system disorders associated with hypovitaminosis B12 remain largely unknown. Growing evidence indicates that astrogliosis is an underlying component of a wide range of neuropathologies. Previously, we developed an in vitro model of cobalamin deficiency in normal human astrocytes (NHA) by culturing the cells with c-lactam of hydroxycobalamin (c-lactam OH-Cbl). We revealed a non-apoptotic activation of caspases (3/7, 8, 9) in cobalamin-deficient NHA, which may suggest astrogliosis. The aim of the current study was to experimentally verify this hypothesis. We indicated an increase in the cellular expression of two astrogliosis markers: glial fibrillary acidic protein and vimentin in cobalamin-deficient NHA using Western blot analysis and immunocytochemistry with confocal laser scanning microscopy. In the next s...
Oxytetracycline is a broad-spectrum antibiotic, used in dermatology and veterinary medicine. Like... more Oxytetracycline is a broad-spectrum antibiotic, used in dermatology and veterinary medicine. Like other tetracyclines, it may evoke skin phototoxic reactions related to generation of reactive oxygen species (ROS). Melanins are biopolymers synthesised in melanocyteshighly specialised cells, localised in the basal layer of epidermis. Production of melanin is a defence mechanism against harmful effects of UV radiation, ROS and many chemical substances, including drugs. In the present study the influence of oxytetracycline and UVA radiation on darkly pigmented melanocytes viability, the melanogenesis process and the activity of antioxidant enzymes were analysed. The obtained results show that oxytetracycline decreases cell viability in a dose-dependent manner. It has also been stated that UVA radiation as well as simultaneous exposure to oxytetracycline and UVA radiation reduce melanocytes viability. The tested drug alone exhibits little effect on antioxidant enzymes activity and has no influence on the synthesis of melanin. However, simultaneous exposure of the cells to oxytetracycline and UVA radiation causes an increase of SOD and GPx activity, a decrease of CAT activity as well as stimulates melanogenesis. The obtained results suggest that phototoxicity of oxytetracycline towards normal human melanocytes depends on both time of UVA exposure and the drug concentration.
Tetracyclines belong to antimicrobial classes with the highest consumption in veterinary medicine... more Tetracyclines belong to antimicrobial classes with the highest consumption in veterinary medicine and agriculture, which leads to the contamination of the environment and food products, as well as to antibiotic resistance and adverse drug reactions. Chloro-derivatives of tetracyclines are thought to be relatively more phototoxic than others and belong to the most frequently cited drugs as photosensitizers. Melanins are heterogenous biopolymers determining skin, hair and eye colour. They are biosynthesized in a multistep process in melanocytes. Melanins, besides photoprotective and antioxidant properties, may also contribute to adverse skin drug reactions, which involve e.g. hyperpigmentation disorders and phototoxic reactions. Furthermore, they have the ability to form a drug-melanin complex, which leads to deposition of the drug or its metabolites in pigmented tissues. The aim of the study was to examine the ability of chlortetracycline to form a complex with melanin, as well as the effect of the drug on viability, antioxidant defence system and melanogenesis in normal human epidermal melanocytes exposed to the UVA radiation. The obtained results show for the first time that chlortetracycline forms a complex with melanin polymers, which creates a possibility of the drug accumulation in pigmented tissues. A simultaneous exposition of normal melanocytes to chlortetracycline and to the UVA radiation decreases cell viability, proportionally to the drug concentration and the irradiation time. The phototoxic effect appears to be related to the induction of oxidative stress in melanocytes, mainly through an increase of SOD and a decrease of the CAT activity. Chlortetracycline itself does not influence the melanin content or the activity of tyrosinase. The UVA radiation appeared to be a conditioning factor stimulating melanogenesis, whereas the presence of the drug augmented this effect. Keywords photolysis, generating e.g. superoxide and hydrogen peroxide [14;15]. Melanins, besides their photoprotective and antioxidant properties, may also contribute to adverse skin drug reactions, which involve e.g. hyperpigmentation disorders and phototoxic reactions. Pigmentary changes can be caused by drug-induced melanin synthesis and postinflammatory alterations, secondary to phototoxicity [16]. Moreover, hyperpigmentation of
Fluoroquinolone antibiotics induce cytotoxicity in various cancer cell lines and may therefore re... more Fluoroquinolone antibiotics induce cytotoxicity in various cancer cell lines and may therefore represent a potentially important source of novel anticancer agents. The aim of the present study was to examine the effect of ciprofloxacin on the viability, redox balance, apoptosis, expression of p53, Bax and Bcl-2, cell cycle distribution and DNA fragmentation of triple-negative MDA-MB-231 breast cancer cells. The results of the present study demonstrated that ciprofloxacin decreases cell viability in a dose-and time-dependent manner. The half maximal inhibitory concentration values of ciprofloxacin in MDA-MB-231 cells following treatment for 24, 48 and 72 h were 0.83, 0.14 and 0.03 µmol/ml, respectively. Furthermore, it was demonstrated that ciprofloxacin altered the redox signaling pathway, as determined by intracellular glutathione depletion. The results of Annexin V/propidium iodide staining revealed that ciprofloxacin triggered the apoptosis of MDA-MB-231 cells. Furthermore, cipfloxacin treatment stimulated the loss of the mitochondrial transmembrane potential via the Bax/Bcl-2-dependent pathway, thus inducing apoptosis. Ciprofloxacin induced cell cycle arrest at the S-phase; therefore it was hypothesized that ciprofloxacin inhibits topoisomerase II. Oligonucleosomal DNA fragmentation and the elevation of p53 expression were observed in the present study, indicating that this late-apoptotic event may be mediated by the p53-dependent pathway. Therefore, the results of the current study provide important molecular data concerning the cellular cascade, which may explain the cytotoxicity induced by ciprofloxacin in human triple-negative breast cancer cells, thus providing a novel insight into the therapeutic properties of this drug.
Fluoroquinolones were shown to be cytotoxic towards various cancer cell lines, thus representing ... more Fluoroquinolones were shown to be cytotoxic towards various cancer cell lines, thus representing a potentially important source of new anticancer agents. The aim of the present study was to examine the effect of moxifloxacin on cell viability, redox balance and apoptosis in both amelanotic-C32 and melanotic-COLO829 melanoma cells. Herein, we found that moxifloxacin decreases the viability of C32 and COLO829 cells in concentration-and time-dependent manner. The EC 50 values were found to be as 0.16 mM, 0.12 mM and 0.11 mM for amelanotic C32 cells as well as 0.40 mM, 0.22 mM and 0.15 mM for COLO829 cells and 24, 48, 72 h incubation time, respectively. Moxifloxacin have also induced the intracellular disulphide imbalance and apoptosis as shown by externalization of phosphatidylserine, caspase-3/7 activation, G 2 /M cell cycle arrest and DNA fragmentation. The mechanism of apoptosis was related to the loss of mitochondrial membrane potential. This is the first study that characterized cellular and molecular mechanism underlying moxifloxacin cytotoxic and proapoptotic effect towards melanoma cells. Although further studies are required to establish efficacy of moxifloxacin against melanoma in clinical practice, the results of current study strongly suggest, that moxifloxacin is promising candidate as a repositioned drug for anti-melanoma treatment.
Ototoxicity is well-documented but not fully understood undesirable side effect of aminoglycoside... more Ototoxicity is well-documented but not fully understood undesirable side effect of aminoglycoside antibiotic, kanamycin. Kanamycin is capable of binding to melanin biopolymers-natural pigments of the skin, hair, and eyes. Melanin-producing cells, melanocytes, are also present in the inner ear and are known to be necessary for normal hearing. It was considered that melanin content in the inner ear may influence aminoglycoside-induced ototoxic effect. The impact of kanamycin on melanocytes homeostasis may thus play role in the antibiotic-induced ototoxic effect. Previously, we demonstrated that kanamycin disturbs homeostasis in light-pigmented melanocytes. To investigate if/how melanization contributes to this phenomenon, the study using in vitro model of dark-pigmented melanocytes is required. Spectrophotometric measurements and electron paramagnetic resonance (EPR) spectroscopy analysis were performed. Kanamycin induced a concentration-dependent loss in HEMn-DP melanocytes viability. The value of IC 50 was estimated to be 5.0 mM. Modulation of the activity of analyzed antioxidant enzymes and increased production of free radicals as well as the decrease of the melanin content were observed. Our results confirmed that kanamycin generates oxidative stress in melanocytes. The increased level of free radicals caused by kanamycin may be responsible for the imbalance of antioxidant defense and the reduction of melanin content in melanocytes. The role of melanin in the mechanism of kanamycin-induced hearing impairment was discussed and the obtained results were compared with the previously demonstrated data concerning light-pigmented melanocytes.
Glioblastoma multiforme (GBM) is the most common and high aggressive malignant brain tumor. Despi... more Glioblastoma multiforme (GBM) is the most common and high aggressive malignant brain tumor. Despite evolving oncology treatment and novel chemotherapeutic agents the median survival of patients diagnosed with GBM is only 12-15 months. This grim fact highlights necessity to identify new drugs that could improve the effectiveness of GBM patients treatment. MIM1 is a specific low molecular Mcl-1 protein inhibitor able to induce Mcl-1-dependent cancer cells death. The aim of this study was to examine the effect of MIM1 as well as MIM1 and temozolomide (TMZ) mixture on cell viability, apoptosis and cell cycle progression in human U87MG glioblastoma cells. Cell viability was performed by the WST-1 assay. Mitochondrial membrane potential, Annexin V assay, DNA fragmentation and cell cycle distribution were determined by fluorescence image cytometer NucleoCounter NC-3000. The obtained results show that MIM1 and MIM1/TMZ mixture decrease glioblastoma cells viability in a doseand time-dependent manner. Moreover, the exposure of U87MG cells to MIM1 and MIM1/TMZ mixture causes mitochondrial dysfunction as well as DNA fragmentation and cell cycle arrest at G 2 /M phase. This study provides for the first time convincing evidence that BH3 mimetic MIM1, which inhibits Mcl-1 antiapoptotic protein may be an efficacious molecule able to induction of apoptosis and sensitize GBM cells to alkylating agents.
Uploads
Papers by Jakub Rok