Papers by Jadwiga Fangrat

Archives of Civil Engineering, Jun 18, 2024
The FRP reinforcement gained importance due to high tensile strength, high durability and ecologi... more The FRP reinforcement gained importance due to high tensile strength, high durability and ecological friendliness [1-7]. Its usefulness as the internal or Near Surface Mounted reinforcement in bent concrete elements has already been proven. Though, in terms of the compressive behaviour of the bars and concrete elements incorporating them, there are still few experimental and numerical considerations, especially when high temperatures are considered. This article contains further considerations on the performance of concrete columns with BFRP main reinforcement in fire resistance tests on the basis of previously presented authors' numerical analyses. Comparative analysis in terms of temperatures, deformations and stresses of concrete columns with BFRP and steel main reinforcement in fire resistance tests is presented by the example of two columns, for which also experimental investigations were performed. Also, a comparative analysis of stress-strain relations for BFRP, steel and concrete at temperatures up to 600 • C is presented. It can be concluded that BFRP bars' properties are strongly different when compressive and tensile performance is considered, especially at elevated temperatures. Tensile strength was higher for BFRP than steel at room temperature, but along with temperature growth, it came the other way (at around 600 • C). The compressive strength of the BFRP bars was higher than the value for concrete, but only for temperatures lower than 200 • C.
Fire Safety Journal, Jul 1, 2023

Cement Wapno Beton, 2020
Modern mortars are complex multi-component systems. Among the mortar components, redispersible po... more Modern mortars are complex multi-component systems. Among the mortar components, redispersible polymer powders (RDPs) play a unique role. They improve the rheology of fresh mortar while providing flexibility and tensile strength after it has hardened. The impact of polymeric binders on mortar properties has been and is currently the subject of intensive research. This paper describes how the use of different redispersible polymer powders affects cement mortars’ selected properties, i.e., crack bridging ability, adhesion determined by measurement of tensile strength and transverse deformation. Results show that all of the RDPs tested positively affect the properties of the examined system. The most significant increase in the mortar’s tensile adhesion strength was observed for the system with vinyl acetate homopolymer, the lower one for the systems with styrene-acrylic heteropolymers and vinyl acetate and ethylene heteropolymers. All tested redispersible polymer powders in the considered system increase the ability to bridge cracks in cement mortar. However, the smallest increment is observed for the acrylic homopolymer and styrene-butadiene heteropolymer. Other RDPs similarly increase the mortar’s cracks bridging ability under test defined as the ability of the hardened material (mortar) to stop the spread of cracks without damaging it. The results obtained for thin-bed cement mortars in terms of crack bridging ability were evaluated comparing the requirements for water-impermeable products. All examined RDPs showed a similar effect on the transverse deformation value of cement mortar.
Materiały Budowlane, 2013

Energies, Nov 24, 2020
The fire load of buildings is significantly increased by means of electric cables, usually creati... more The fire load of buildings is significantly increased by means of electric cables, usually creating a long combustible base for fire to spread and in this way decreasing the fire safety of buildings. The aim of the study was to evaluate a relationship between the construction of the cables and their fire properties, especially the mass loss influence on other fire properties of cables. Six cables of different core numbers were tested by means of the standard test method EN 50399. Additionally, thermogravimetric analysis and Attenuated Total Reflection-Fourier Transform Infrared analysis were performed on the separate outer sheath, bedding, and core insulations in order to determine the similarity of the materials' chemical structures. It was found that: (1) the construction of the cable strongly influences the fire behavior due to the creation of a barrier for flame penetration and emission of combustion effluents though inside the closed agglomeration of non-combustible metallic cores (conductors), and the intumescent structures formed from aluminum trihydrate/zinc borate fillers and fire retardants in outer sheath material during the self-sustained combustion process after ignition of cables; (2) the inhomogeneous distribution of non-combustible inorganic fillers or different contents of fillers and flame retardants within the polymer fraction cause an unobvious fire behaviors of cables; and (3) the use of bedding in multicore cable construction results in lower values of combustion parameters (maximum average heat release rate, total heat release, maximum average smoke production rate, total smoke production), e.g., better fire properties of cables.
Materials, Feb 17, 2023
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

Energies, Nov 29, 2019
The significant number of cables of different materials and construction used extensively in buil... more The significant number of cables of different materials and construction used extensively in building objects increases their fire load and, therefore, strongly influences safety in the case of fire. The purpose of the study was to identify relevant factors related to the construction of electrical cables, and perform a qualitative and quantitative assessment of their influence on specific fire properties, such as heat release and smoke production. Fifteen cables of different construction and materials were studied using the EN 50399 standard test. The analysis was focused on cable constructional-material parameters related to the chemical composition of non-metallic elements and the number and shape of conductors in the cable, as well as the concentric barrier as armor or the copper concentric conductor. The conclusions drawn from the experiments were: (1) Construction, the number of conductors, and the presence of armor or concentric metallic conductors improve the fire properties by forming a barrier against flame penetration through the cable; (2) the use of copper conductors resulted in a decrease of fire parameters compared to cables with aluminum conductors (peakHRR av parameter even four times lower for copper cable); (3) construction material based on non-plasticized poly(vinyl chloride) (PVC) significantly reduced the fire properties of cables more than halogen-free materials (LS0H) (peakHRR av parameter more than 17 times higher for the fully halogenated cable), which is due to the decomposition process of the material; and (4) no clear relationship between the fire parameters and the cable parameter, χ, was found.

Materials, Mar 2, 2020
Ventilation-controlled fires tend to be the worst for toxicity, because they produce large amount... more Ventilation-controlled fires tend to be the worst for toxicity, because they produce large amounts of fire effluent containing high yields of toxic products. In order to examine the dependence of the amount of chosen few main combustion gases under ventilation-controlled conditions, a PVC-insulated copper electric wire with unknown composition (PVC filled with chalk) was studied by mean of a steady state tube furnace. For the tested wire, lower values of CO 2 yields at different ventilation conditions were obtained than for the reference pure polymer unplasticized PVC and additionally tested pure LDPE, the yields were higher three times in the case of PVC and two times in the case of LDPE than those received for wire at the same ventilation conditions, which pointed out decreasing contribution of hyperventilation effect to human during cable fire. In contrast, higher values of toxic CO yields, four times higher, were obtained for the PVC-insulated electric wire rather than for the pure polymers. The maximum value of CO yield (0.57 g/g) was determined in the case of 5 L/min of primary airflow and decreased with increasing ventilation. The measured yields of hydrocarbons were similar to the reference values except for the equivalence ratio φ = 0.27, where hydrocarbon yield was equal to 0.45 g/g. The HCl yield of fire effluents from the PVC-insulated wire was shown to be independent of ventilation conditions. The corrosive reaction between copper and the HCl species and the flame-retardant mechanisms of the additives, caused the lower values of HCl in the fire effluent of the PVC-insulated copper wire than for pure polymer.
Fire Technology, Aug 1, 2022

Energies, Dec 4, 2020
Electrical installations are a significant component of fire load inside a building, although the... more Electrical installations are a significant component of fire load inside a building, although they are often neglected in the overall fire safety analysis and are not subjected to any kind of fire safety evaluation of a building. A typical electrical installation unconnected to the mains was experimentally studied using a single burning item (SBI) test apparatus, fixed to two types of popular non-combustible or combustible (wooden-based) backgrounds simulating a typical building internal wall or ceiling. The semi-real scale test showed that poly(vinyl chloride) (PVC) cable, commonly used in installations in buildings in Europe and used in SBI tests, showed high fire properties related to heat release, smoke production and flame spread to other interior elements. The results of the electrical circuit connected to the main measurements carried out showed a significant impact of the heating effect towards the uncovered surface socket, causing the possibility of easy ignition inside the installation. In conclusion, it was found that even a relatively simple and short section of electrical installation resulted in a significant increase in the heat release rate and smoke generation parameters, obtained during the SBI tests, and as a consequence a reduction of one or two reaction to fire euroclasses of construction materials for internal walls.
Energies, Feb 15, 2021
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
10th MATBUD’2023 Scientific-Technical Conference
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Uploads
Papers by Jadwiga Fangrat