NCEP/NLDAS Drought Monitoring and Prediction
Agu Spring Meeting Abstracts, May 1, 2009
The NCEP Environmental Modeling Center (EMC) collaborated with its CPPA (Climate Prediction Progr... more The NCEP Environmental Modeling Center (EMC) collaborated with its CPPA (Climate Prediction Program of the Americas) partners to develop a North American Land Data Assimilation System (NLDAS, http://www.emc.ncep.noaa.gov/mmb/nldas) to monitor and predict the drought over the Continental United States (CONUS). The realtime NLDAS drought monitor, executed daily at NCEP/EMC, including daily, weekly and monthly anomaly and percentile of six fields (soil moisture, snow water equivalent, total runoff, streamflow, evaporation, precipitation) outputted from four land surface models (Noah, Mosaic, SAC, and VIC) on a common 1/8th degree grid using common hourly land surface forcing. The non-precipitation surface forcing is derived from NCEP's retrospective and realtime North American Regional Reanalysis System (NARR). The precipitation forcing is anchored to a daily gauge-only precipitation analysis over CONUS that applies a Parameter-elevation Regressions on Independent Slopes Model (PRISM) correction. This daily precipitation analysis is then temporally disaggregated to hourly precipitation amounts using radar and satellite precipitation. The NARR- based surface downward solar radiation is bias-corrected using seven years (1997-2004) of GOES satellite- derived solar radiation retrievals. The uncoupled ensemble seasonal drought prediction utilizes the following three independent approaches for generating downscaled ensemble seasonal forecasts of surface forcing: (1) Ensemble Streamflow Prediction, (2) CPC Official Seasonal Climate Outlook, and (3) NCEP CFS ensemble dynamical model prediction. For each of these three approaches, twenty ensemble members of forcing realizations are generated using a Bayesian merging algorithm developed by Princeton University. The three forcing methods are then used to drive the VIC model in seasonal prediction mode over thirteen large river basins that together span the CONUS domain. One to nine month ensemble seasonal prediction products such as air temperature, precipitation, soil moisture, snowpack, total runoff, evaporation and streamflow are derived for each forcing approach. The anomalies and percentiles of the predicted products for each approach may be used for CONUS drought prediction. This system is executed at the beginning of each month and distributes its products by the 10th of each month. The prediction products are evaluated using corresponding monitoring products for the VIC model and are compared with the prediction products from other research groups (e.g., University of Washington at Seattle, NASA Goddard) in the CONUS.
Uploads
Papers by J. Schaake