HIV-1 Gag is a large multidomain poly-protein with flexible unstructured linkers connecting its g... more HIV-1 Gag is a large multidomain poly-protein with flexible unstructured linkers connecting its globular subdomains. It is compact when in solution but assumes an extended conformation when assembled within the immature HIV-1 virion. Here, we use molecular dynamics (MD) simulations to quantitatively characterize the intra-domain interactions of HIV-1 Gag. We find that the matrix (MA) domain and the C-terminal subdomain CA ctd of the CA capsid domain can form a bound state. The bound state, which is held together primarily by interactions between complementary charged and polar residues, stabilizes the compact state of HIV-1 Gag. We calculate the depth of the attractive free energy potential between the MA/ CA ctd sites and find it to be about three times larger than the dimerization interaction between the CA ctd domains. Sequence analysis shows high conservation within the newlyfound intra-Gag MA/CA ctd binding site, as well as its spatial proximity to other well known elements of Gag -such as CA ctd 's SP1 helix region, its inositol hexaphosphate (IP6) binding site and major homology region (MHR), as well as the MA trimerization site. Our results point to a high, but yet undetermined, functional significance of the intra-Gag binding site. Recent biophysical experiments that address the binding specificity of Gag are interpreted in the context of the MA/CA ctd bound state, suggesting an important role in selective packaging of genomic RNA by Gag.
A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is... more A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g. sliding, hopping, intersegmental transfer, etc.), is considered. The modeling suggests an elementary and general method of data analysis, which enables the extraction of the enzyme's processivity directly and unambiguously from experimental data. This analysis is not limited to the initial velocity regime. The predictions are validated both against detailed numerical models and by revisiting published experimental data for EcoRI endonuclease acting on DNA.
Small-molecule DNA-binding drugs have shown promising results in clinical use against many types ... more Small-molecule DNA-binding drugs have shown promising results in clinical use against many types of cancer. Understanding the molecular mechanisms of DNA binding for such small molecules can be critical in advancing future drug designs. We have been exploring the interactions of ruthenium-based small-molecules and their DNA-binding properties that are highly relevant in the development of novel metal-based drugs. Previously we have studied the effects of the right-handed binuclear ruthenium threading intercalator ΔΔ-[μ-bidppz(phen)4Ru2]4+, or ΔΔ-P for short, which showed extremely slow kinetics and high affinity binding to DNA. Here we investigate the left-handed enantiomer ΛΛ-[μ-bidppz(phen)4Ru2]4+, or ΛΛ-P for short, to study the effects of chirality on DNA threading intercalation. We employ single-molecule optical trapping experiments to understand the molecular mechanisms and nanoscale structural changes that occur during DNA-binding and unbinding as well as the association and disassociation rates. Despite the similar threading intercalation binding mode of the two enantiomers, our data show that the left-handed ΛΛ-P complex requires increased lengthening of the DNA to thread, and it extends the DNA more than double the length at equilibrium compared to the right-handed ΔΔ-P. We also observed that the left-handed ΛΛ-P complex unthreads three times faster than ΔΔ-P. These results, along with a weaker binding affinity estimated for ΛΛ-P, suggest a preference in DNA binding to the chiral enantiomer having the same right-handed chirality as the DNA molecule, regardless of their common intercalating moiety. This comparison provides a better understanding of how chirality affects binding to DNA and may contribute to the development of enhanced potential cancer treatment drug designs.
Nucleosome disruption plays a key role in many nuclear processes including transcription, DNA rep... more Nucleosome disruption plays a key role in many nuclear processes including transcription, DNA repair and recombination. Here we combine atomic force microscopy (AFM) and optical tweezers (OT) experiments to show that high mobility group B (HMGB) proteins strongly disrupt nucleosomes, revealing a new mechanism for regulation of chromatin accessibility. We find that both the double box yeast Hmo1 and the single box yeast Nhp6A display strong binding preferences for nucleosomes over linker DNA, and both HMGB proteins destabilize and unwind DNA from the H2A-H2B dimers. However, unlike Nhp6A, Hmo1 also releases half of the DNA held by the (H3-H4) 2 tetramer. This difference in nucleosome destabilization may explain why Nhp6A and Hmo1 function at different genomic sites. Hmo1 is enriched at highly transcribed ribosomal genes, known to be depleted of histones. In contrast, Nhp6A is found across euchromatin, pointing to a significant difference in cellular function.
RNA and DNA hairpin formation and disruption play key regulatory roles in a variety of cellular p... more RNA and DNA hairpin formation and disruption play key regulatory roles in a variety of cellular processes. The 59-nucleotide transactivation response (TAR) RNA hairpin facilitates the production of full-length transcripts of the HIV-1 genome. Yet the stability of this long, irregular hairpin becomes a liability during reverse transcription as 24 base pairs must be disrupted for strand transfer. Retroviral nucleocapsid (NC) proteins serve as nucleic acid chaperones that have been shown to both destabilize the TAR hairpin and facilitate strand annealing with its complementary DNA sequence. Yet it has remained difficult to elucidate the way NC targets and dramatically destabilizes this hairpin while only weakly affecting the annealed product. In this work, we used optical tweezers to measure the stability of TAR and found that adding NC destabilized the hairpin and simultaneously caused a distinct change in both the height and location of the energy barrier. This data was matched to an energy landscape predicted from a simple theory of definite base pair destabilization. Comparisons revealed the specific binding sites found by NC along the irregular TAR hairpin. Furthermore, specific binding explained both the unusual shift in the transition state and the much weaker effect on the annealed product. These experiments illustrate a general method of energy landscape transformation that exposes important physical insights.
HIV-1 Gag is a large multidomain poly-protein with flexible unstructured linkers connecting its g... more HIV-1 Gag is a large multidomain poly-protein with flexible unstructured linkers connecting its globular subdomains. It is compact when in solution but assumes an extended conformation when assembled within the immature HIV-1 virion. Here, we use molecular dynamics (MD) simulations to quantitatively characterize the intra-domain interactions of HIV-1 Gag. We find that the matrix (MA) domain and the C-terminal subdomain CA ctd of the CA capsid domain can form a bound state. The bound state, which is held together primarily by interactions between complementary charged and polar residues, stabilizes the compact state of HIV-1 Gag. We calculate the depth of the attractive free energy potential between the MA/ CA ctd sites and find it to be about three times larger than the dimerization interaction between the CA ctd domains. Sequence analysis shows high conservation within the newlyfound intra-Gag MA/CA ctd binding site, as well as its spatial proximity to other well known elements of Gag -such as CA ctd 's SP1 helix region, its inositol hexaphosphate (IP6) binding site and major homology region (MHR), as well as the MA trimerization site. Our results point to a high, but yet undetermined, functional significance of the intra-Gag binding site. Recent biophysical experiments that address the binding specificity of Gag are interpreted in the context of the MA/CA ctd bound state, suggesting an important role in selective packaging of genomic RNA by Gag.
A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is... more A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g. sliding, hopping, intersegmental transfer, etc.), is considered. The modeling suggests an elementary and general method of data analysis, which enables the extraction of the enzyme's processivity directly and unambiguously from experimental data. This analysis is not limited to the initial velocity regime. The predictions are validated both against detailed numerical models and by revisiting published experimental data for EcoRI endonuclease acting on DNA.
Small-molecule DNA-binding drugs have shown promising results in clinical use against many types ... more Small-molecule DNA-binding drugs have shown promising results in clinical use against many types of cancer. Understanding the molecular mechanisms of DNA binding for such small molecules can be critical in advancing future drug designs. We have been exploring the interactions of ruthenium-based small-molecules and their DNA-binding properties that are highly relevant in the development of novel metal-based drugs. Previously we have studied the effects of the right-handed binuclear ruthenium threading intercalator ΔΔ-[μ-bidppz(phen)4Ru2]4+, or ΔΔ-P for short, which showed extremely slow kinetics and high affinity binding to DNA. Here we investigate the left-handed enantiomer ΛΛ-[μ-bidppz(phen)4Ru2]4+, or ΛΛ-P for short, to study the effects of chirality on DNA threading intercalation. We employ single-molecule optical trapping experiments to understand the molecular mechanisms and nanoscale structural changes that occur during DNA-binding and unbinding as well as the association and disassociation rates. Despite the similar threading intercalation binding mode of the two enantiomers, our data show that the left-handed ΛΛ-P complex requires increased lengthening of the DNA to thread, and it extends the DNA more than double the length at equilibrium compared to the right-handed ΔΔ-P. We also observed that the left-handed ΛΛ-P complex unthreads three times faster than ΔΔ-P. These results, along with a weaker binding affinity estimated for ΛΛ-P, suggest a preference in DNA binding to the chiral enantiomer having the same right-handed chirality as the DNA molecule, regardless of their common intercalating moiety. This comparison provides a better understanding of how chirality affects binding to DNA and may contribute to the development of enhanced potential cancer treatment drug designs.
Nucleosome disruption plays a key role in many nuclear processes including transcription, DNA rep... more Nucleosome disruption plays a key role in many nuclear processes including transcription, DNA repair and recombination. Here we combine atomic force microscopy (AFM) and optical tweezers (OT) experiments to show that high mobility group B (HMGB) proteins strongly disrupt nucleosomes, revealing a new mechanism for regulation of chromatin accessibility. We find that both the double box yeast Hmo1 and the single box yeast Nhp6A display strong binding preferences for nucleosomes over linker DNA, and both HMGB proteins destabilize and unwind DNA from the H2A-H2B dimers. However, unlike Nhp6A, Hmo1 also releases half of the DNA held by the (H3-H4) 2 tetramer. This difference in nucleosome destabilization may explain why Nhp6A and Hmo1 function at different genomic sites. Hmo1 is enriched at highly transcribed ribosomal genes, known to be depleted of histones. In contrast, Nhp6A is found across euchromatin, pointing to a significant difference in cellular function.
RNA and DNA hairpin formation and disruption play key regulatory roles in a variety of cellular p... more RNA and DNA hairpin formation and disruption play key regulatory roles in a variety of cellular processes. The 59-nucleotide transactivation response (TAR) RNA hairpin facilitates the production of full-length transcripts of the HIV-1 genome. Yet the stability of this long, irregular hairpin becomes a liability during reverse transcription as 24 base pairs must be disrupted for strand transfer. Retroviral nucleocapsid (NC) proteins serve as nucleic acid chaperones that have been shown to both destabilize the TAR hairpin and facilitate strand annealing with its complementary DNA sequence. Yet it has remained difficult to elucidate the way NC targets and dramatically destabilizes this hairpin while only weakly affecting the annealed product. In this work, we used optical tweezers to measure the stability of TAR and found that adding NC destabilized the hairpin and simultaneously caused a distinct change in both the height and location of the energy barrier. This data was matched to an energy landscape predicted from a simple theory of definite base pair destabilization. Comparisons revealed the specific binding sites found by NC along the irregular TAR hairpin. Furthermore, specific binding explained both the unusual shift in the transition state and the much weaker effect on the annealed product. These experiments illustrate a general method of energy landscape transformation that exposes important physical insights.
Uploads
Papers by Ioulia Rouzina