Papers by Gary Fahnenstiel

Canadian Journal of Fisheries and Aquatic Sciences, Apr 12, 2011
Microcystis aeruginosa, a planktonic colonial cyanobacterium, was not abundant in the 2-year peri... more Microcystis aeruginosa, a planktonic colonial cyanobacterium, was not abundant in the 2-year period before zebra mussel (Dreissena polymorpha) establishment in Saginaw Bay (Lake Huron) but became abundant in three of five summers subsequent of mussel establishment. Using novel methods, we determined clearance, capture, and assimilation rates for zebra mussels feeding on natural and laboratory M. aeruginosa strains offered alone or in combination with other algae. Results were consistent with the hypothesis that zebra mussels promoted blooms of toxic M. aeruginosa in Saginaw Bay, western Lake Erie, and other lakes through selective rejection in pseudofeces. Mussels exhibited high feeding rates similar to those seen for a highly desirable food alga (Cryptomonas) with both large (>53 m m) and small (<53 m m) colonies of a nontoxic and a toxic laboratory strain of M. aeruginosa known to cause blockage of feeding in zooplankton. In experiments with naturally occurring toxic M. aeruginosa from Saginaw Bay and Lake Erie and a toxic isolate from Lake Erie, mussels exhibited lowered or normal filtering rates with rejection of M. aeruginosa in pseudofeces. Selective rejection depended on "unpalatable" toxic strains of M. aeruginosa occurring as large colonies that could be rejected efficiently while small desirable algae were ingested.

A large-scale study of Saginaw Bay was initiated in 1990 and continued through 1993 to examine th... more A large-scale study of Saginaw Bay was initiated in 1990 and continued through 1993 to examine the effects of the zebra mussel colonization which began in summerlfall 1991. Saginaw Bay responded quickly to the zebra mussel colonization, as fall 1991 values of chlorophyll were similar to 1992 and 1993 values. In inner Saginaw Bay, where most zebra mussels were found, chlorophyll, kPAR, and total phosphorus values decreased, and Secchi disk depth increased during the study period, regardless of the presence or absence of zebra mussels at a specific station. At outer bay control stations no significant differences were found for chlorophyll, kPAR, and Secchi disk values. In order to examine longer-term trends, water quality data from 1979-1980 (STORED were combined with our 1990 data (pre-zebra mussel period) and compared to values from the post zebra mussel period (jail 1991, all 1992 and 1993). At stations with high densities of zebra mussels, chlorophyll and total P decreased by 66% and 48%, respectively, and Secchi disk values increased 88%. At outer bay control stations no significant differences were found for chlorophyll or Secchi disk. When parameters were averaged throughout inner Saginaw Bay, zebra mussels caused a 59% and 43% decrease in chlorophyll and in total phosphorus and a 60% increase in Secchi disk transparency. Although zebra mussels significantly altered water quality parameters in the pelagic region of Saginaw Bay, they did not necessarily change system trophic state; rather they altered the spatial partitioning of resources.
The authors regret that there is an error on the labels of two figures that were published in the... more The authors regret that there is an error on the labels of two figures that were published in the paper referenced above. For Figs. 5b, c, and d and 7b and c the y-axes have the wrong labels.

Proceedings of the National Academy of Sciences, 2013
In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a pe... more In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads. An extended period of weak lake circulation then led to abnormally long residence times that incubated the bloom, and warm and quiescent conditions after bloom onset allowed algae to remain near the top of the water column and prevented flushing of nutrients from the system. We further find that all of these factors are consistent with expected future conditions. If a scientifically guided management plan to mitigate these impacts is not implemented, we can therefore expect this bloom to be a harbinger of future blooms in Lake Erie. extreme precipitation events | climate change | aquatic ecology | Microcystis sp. | Anabaena sp.

Limnology and Oceanography, 2001
In this study, Advanced Very High Resolution Radiometer (AVHRR) remote sensing reflectance (R rs ... more In this study, Advanced Very High Resolution Radiometer (AVHRR) remote sensing reflectance (R rs ), imagery from 1987-1993 is used to study changes in water clarity before and after zebra mussels (Dreissena polymorpha) were discovered in Saginaw Bay, Lake Huron. Spatial and temporal trends in the data indicate distinct and persistent increases in water clarity in the inner bay after the first large recruitment of zebra mussels in the fall of 1991. The pre-Dreissena imagery show that turbidity in the inner bay was influenced by the Saginaw River discharge in spring, biological production (plankton) in summer, and wind-driven resuspension in fall, with highest turbidity in spring and fall. Spatial patterns in the post-Dreissena images were more similar regardless of season, with low reflectances in the shallow regions of the inner bay where zebra mussel densities were highest. A regression model based on point data from 24 sampling stations over the 7-yr period indicates that reflectances varied significantly by site and zebra mussel densities, as well as seasonally. Trends in observed and predicted values of reflectances followed similar patterns at each station-highest values were found during 1991 and lowest during 1992 at all stations, with slightly higher R rs in 1993 compared to 1992. Whereas AVHRR R rs highlight the value of historical imagery for reconstructing seasonal and interannual turbidity patterns in near-shore waters, a new generation of operational ocean color satellites, such as SeaWiFS (Sea-viewing Wide Field-of-view Sensor) and the newly launched MODIS (moderate resolution imaging spectroradiometer), now provide for routine monitoring of important biological and physical processes from space.

Limnology and Oceanography, 1998
We studied water, sediment trap, and core samples from eastern Lake Ontario to reconstruct the fa... more We studied water, sediment trap, and core samples from eastern Lake Ontario to reconstruct the factors controlling the biologically induced production and sedimentation of calcite during so-called whiting events. Calcite accumulation and its isotopic composition are controlled by a complex set of interrelated factors, including temperature, primary productivity, and the abundance of pica-cyanobacteria during the stratified period. Calcite precipitation is highly correlated to lake temperature, because physical and biological factors interact to produce conditions favorable for whitings during warm years when the lake stratifies early in the seasonal cycle. Carbonate stratigraphies in multiple cores from eastern Lake Ontario revealed similar patterns of historical variation in percent carbonate. An exponential rise in carbonate accumulation occurred in nine cores after 1930, culminating in peak values in the early 1980s. This rise was related to historic increases in primary productivity resulting from increased phosphorus loading to Lake Ontario. Superimposed upon this rise were four peaks (centered on 1940-1942, 1957-1961, 1971-1977, and 1983) that correlate with maxima in summer air-temperature anomalies from the Great Lakes region and with strong El Niiio events. These peaks are also associated with maxima in S'C values and minima in S180 values of carbonate, lending support to our model that more calcite is precipitated with higher 6'C values during warm years when thermal stratitication occurs early in the seasonal cycle. Beginning in the mid-1980s calcite accumulation and its 6°C ratio began to decrease, suggesting a reduction in primary productivity in surface waters, probably related to lower phosphate concentrations in epilimnetic waters of Lake Ontario during the stratified period. Reduced summer P loading may be explained either by a lagged response to P abatement measures that began in the late 1970s or by decreased P loading from upstream Lake Erie beginning in the late 1980s as a result of the establishment of filter-feeding zebra mussels
Journal of Phycology, 1999
ABSTRACT

Journal of Great Lakes Research, 2013
A new MODIS based satellite algorithm to estimate primary production (PP) has been generated and ... more A new MODIS based satellite algorithm to estimate primary production (PP) has been generated and evaluated for Lake Michigan. The Great Lakes Primary Productivity Model (GLPPM) is based on previous models that required extensive in situ data but it can utilize remotely sensed observations as input for some model variables and therefore allows greater spatial resolution for primary productivity estimates. The Color Producing Agent Algorithm (CPA-A) is utilized to obtain robust chlorophyll a values and the NASA KD2M approach is used to obtain the diffuse attenuation coefficient (K d ). Only incident PAR and carbon fixation rates are additionally needed to generate the primary productivity estimate. Comparisons of the satellite derived PP estimates from single monthly images to average monthly field measurements made by NOAA/ GLERL found good agreement between estimates. Satellite derived PP estimates were used to estimate a preliminary Lake Michigan annual primary production of 8.5 Tg C/year. The new algorithm can be easily adapted to work on all the Great Lakes and therefore can be used to generate time series dating back to late 1997 (launch of SeaWiFs). These time series can contribute to improved assessment of Great Lakes primary productivity changes as a result of biological events, such as Dreissenid mussel invasions, climatic change and anthropogenic forcing.

Journal of Great Lakes Research, 2012
We examined seasonal dynamics of zooplankton at an offshore station in Lake Michigan from 1994Mic... more We examined seasonal dynamics of zooplankton at an offshore station in Lake Michigan from 1994Michigan from to 2003Michigan from and 2007Michigan from to 2008. This period saw variable weather, declines in planktivorous fish abundance, the introduction and expansion of dreissenid mussels, and a slow decline in total phosphorus concentrations. After the major expansion of mussels into deep water (2007)(2008), chlorophyll in spring declined sharply, Secchi depth increased markedly in all seasons, and planktivorous fish biomass declined to record-low levels. Overlaying these dramatic ecosystem-level changes, the zooplankton community exhibited complex seasonal dynamics between 1994-2003 and 2007-2008. Phenology of the zooplankton maximum was affected by onset of thermal stratification, but there was no other discernable effect due to temperature. Interannual variability in zooplankton biomass during 1994 and 2003 was strongly driven by planktivorous fish abundance, particularly age-0 and age-1 alewives. In 2007-2008, there were large decreases in Diacyclops thomasi and Daphnia mendotae possibly caused by food limitation as well as increased predation and indirect negative effects from increases in Bythotrephes longimanus abundance and in foraging efficiency associated with increased light penetration. The Bythotrephes increase was likely driven in part by decreased predation from yearling and older alewife. While there was a major decrease in epilimnetic-metalimnetic herbivorous cladocerans in 2007-2008, there was an increase in large omnivorous and predacious calanoid copepods, especially those in the hypolimnion. Thus, changes to the zooplankton community are the result of cascading, synergistic interactions, including a shift from vertebrate to invertebrate planktivory and mussel ecosystem impacts on light climate and chlorophyll.
Journal of Great Lakes Research, 2012
The authors regret that there is an error on the labels of two figures that were published in the... more The authors regret that there is an error on the labels of two figures that were published in the paper referenced above. For Figs. 5b, c, and d and 7b and c the y-axes have the wrong labels.
Journal of Great Lakes Research, 1984
Journal of Great Lakes Research, 1987
... Treat ment 1 was a control diluted with P-free ROW. The experimental treatments are summarize... more ... Treat ment 1 was a control diluted with P-free ROW. The experimental treatments are summarized in Table 1. In each experiment, treatments with P free ROWand acidified (pH 3.0) P-free ROW were 220 MANNY et af run as controls. ...
Journal of Great Lakes Research, 1995
Journal of Great Lakes Research, 1995
Journal of Great Lakes Research, 1995

Journal of Great Lakes Research, 1995
Concentrations of particulate and dissolved nutrients in Saginaw Bay, Lake Huron, were examined r... more Concentrations of particulate and dissolved nutrients in Saginaw Bay, Lake Huron, were examined relative to zebra mussel colonization which occurred summer 1991. The magnitude and spatial pattern of changes indicate that mussels had a significant impact on nutrients in Saginaw Bay. Annual means for total suspended solids, particulate organic carbon, particulate phosphorus, and particulate silica in the inner bay were significantly lower in 1992 and 1993 (post-zebra mussel) than in 1991 (pre-zebra mussel). Annual means decreased from 11.5 mg L-1 , 1.45 mg C L-1 (121 pM), 20.4 j.lg P L-1 (0.66 pM), and 1.52 mg Si0 2 L-1 (24 pM) respectively in 1991 to 4.4 mg L-1 , 0.79 mg C L-1 (66 pM), 11.2 j.lg P L-1 (0.36 pM), and 0.77 mg Si0 2 L-1 (12 J1M) in 1993. In contrast, there were no significant differences among years for these parameters at control stations, which were located in the outer bay and had no known popUlations of mussels. Annual means for nitrate, ammonium, and silica were significantly higher in the inner bay in 1992 than in 1991, but not significantly different in 1993. Means increased from 0.39 mg N L-1, 21.0 j.lg N L-1 , and 1.11 mg Si0 2 L-1 respectively in 1991 to 0.47 mg N L-1 , 30.9 j.lg N L-1 , and 1.71 mg Si0 2 L-1 in 1992. No significant differences were observed for these parameters in the control group. Differences between 1992 and 1993 may reflect differences in the amount of runoff and circulation between Saginaw Bay and Lake Huron.

Journal of Great Lakes Research, 1995
A large-scale study of Saginaw Bay was initiated in 1990 and continued through 1993 to examine th... more A large-scale study of Saginaw Bay was initiated in 1990 and continued through 1993 to examine the effects of the zebra mussel colonization which began in summerlfall 1991. Saginaw Bay responded quickly to the zebra mussel colonization, as fall 1991 values of chlorophyll were similar to 1992 and 1993 values. In inner Saginaw Bay, where most zebra mussels were found, chlorophyll, kPAR, and total phosphorus values decreased, and Secchi disk depth increased during the study period, regardless of the presence or absence of zebra mussels at a specific station. At outer bay control stations no significant differences were found for chlorophyll, kPAR, and Secchi disk values. In order to examine longer-term trends, water quality data from 1979-1980 (STORED were combined with our 1990 data (pre-zebra mussel period) and compared to values from the post zebra mussel period (jail 1991, all 1992 and 1993). At stations with high densities of zebra mussels, chlorophyll and total P decreased by 66% and 48%, respectively, and Secchi disk values increased 88%. At outer bay control stations no significant differences were found for chlorophyll or Secchi disk. When parameters were averaged throughout inner Saginaw Bay, zebra mussels caused a 59% and 43% decrease in chlorophyll and in total phosphorus and a 60% increase in Secchi disk transparency. Although zebra mussels significantly altered water quality parameters in the pelagic region of Saginaw Bay, they did not necessarily change system trophic state; rather they altered the spatial partitioning of resources.
Uploads
Papers by Gary Fahnenstiel