Papers by Federica Blanchi

The recovery of wastewater will be a fundamental action in the coming years to facilitate the sus... more The recovery of wastewater will be a fundamental action in the coming years to facilitate the sustainable development of the world's economies. A large portion of recoverable wastewater comes from petrochemical activities such as oil extraction and its subsequent refining processes. The most important characteristic of this water is its heavy contamination by soluble and insoluble hydrocarbons (as emulsioned hydrocarbons) and inorganic and heavy metal ions. Furthermore, the presence of refineries is directly linked to possible groundwater contamination that must be then remediated. In this context, adsorption technologies appear to be very promising for the remediation and recovery of "petrochemical" water. In this paper, we present a review of applied adsorption technologies and examine both the use of two different microporous materials, a natural zeolite called clinoptilolite and a polymeric chelating resin named Purolite Ò Resin S910, for the removal of dissolved heavy metals, and the use of a mesoporous siliceous material for the uptake of hydrocarbons from wastewater. Batch experiments on the kinetics and equilibrium of adsorption were carried out on all the materials by using Pb 2þ , Cd 2þ and Ni 2þ as target heavy metals and benzene and toluene as target organic pollutants. The effect of ionic strength was also investigated.

Journal of Cleaner Production, 2014
The recovery of wastewater will be a fundamental action in the coming years to facilitate the sus... more The recovery of wastewater will be a fundamental action in the coming years to facilitate the sustainable development of the world's economies. A large portion of recoverable wastewater comes from petrochemical activities such as oil extraction and its subsequent refining processes. The most important characteristic of this water is its heavy contamination by soluble and insoluble hydrocarbons (as emulsioned hydrocarbons) and inorganic and heavy metal ions. Furthermore, the presence of refineries is directly linked to possible groundwater contamination that must be then remediated. In this context, adsorption technologies appear to be very promising for the remediation and recovery of "petrochemical" water. In this paper, we present a review of applied adsorption technologies and examine both the use of two different microporous materials, a natural zeolite called clinoptilolite and a polymeric chelating resin named Purolite Ò Resin S910, for the removal of dissolved heavy metals, and the use of a mesoporous siliceous material for the uptake of hydrocarbons from wastewater. Batch experiments on the kinetics and equilibrium of adsorption were carried out on all the materials by using Pb 2þ , Cd 2þ and Ni 2þ as target heavy metals and benzene and toluene as target organic pollutants. The effect of ionic strength was also investigated.
Uploads
Papers by Federica Blanchi