Papers by Dorset Trapnell

Heredity
Spatial patterns of genetic variation can reveal otherwise cryptic evolutionary and landscape pro... more Spatial patterns of genetic variation can reveal otherwise cryptic evolutionary and landscape processes. In northwestern Costa Rica, an approximately concordant genetic discontinuity occurs among populations of several plant species. We conducted phylogeographic analyses of an epiphytic orchid, Brassavola nodosa, to test for genetic discontinuity and to explore its underlying causes. We genotyped 18 populations with 19 nuclear loci and two non-coding chloroplast sequence regions. We estimated genetic diversity and structure, relative importance of pollen and seed dispersal, and divergence time to understand how genetic diversity was spatially partitioned. Nuclear genetic diversity was high with little differentiation among populations (G STn = 0.065). In contrast, chloroplast haplotypes were highly structured (G STc = 0.570) and reveal a discontinuity between northwestern and southeastern populations within Costa Rica. Haplotype differences suggest two formerly isolated lineages that diverged~10,000-100,000 YBP. Haplotype mixing and greater genetic diversity occur in an intermediate transition zone. Patterns of nuclear and chloroplast data were consistent. Different levels of genetic differentiation for the two genomes reflect the relative effectiveness of biotic versus abiotic dispersers of pollen and seeds, respectively. Isolation of the two lineages likely resulted from the complex environmental and geophysical history of the region. Our results suggest a recent cryptic seed dispersal barrier and/or zone of secondary contact. We hypothesize that powerful northeasterly trade winds hinder movement of wind-borne seeds between the two regions, while the multidirectional dispersal of pollen by strong-flying sphinx moths resulted in lower differentiation of nuclear loci.

Colonization of vacant habitat is a fundamental ecological process that affects the ability of sp... more Colonization of vacant habitat is a fundamental ecological process that affects the ability of species to persist and undergo range modifications in continually shifting landscapes. Thus, understanding factors that affect and limit colonization has important ecological and conservation implications. Epiphytic orchids are increasingly threatened by various factors, including anthropogenic habitat disturbance. As cleared areas (e.g. pastures) are recolonized by suitable host trees, the establishment and genetic composition of epi-phytic orchid populations are likely a function of their colonization patterns. We used genetic analyses to infer the prevailing colonization pattern of the epiphytic orchid, Brassavola nodosa. Samples from three populations (i.e. individuals within a tree) from each of five pastures in the dry forest of Costa Rica were genotyped with neutral nuclear and chloroplast markers. Spatial autocorrelation and hierarchical genetic structure analyses were used to assess the relatedness of individuals within populations, among populations within pastures and among populations in different pastures. The results showed significant relatedness within populations (mean r = 0.166) and significant but lower relatedness among populations within a pasture (mean r = 0.058). Our data suggest that colonization of available habitats is by few individuals with subsequent population expansion resulting from in situ reproduction, and that individuals within a tree are not a random sample of the regional seed pool. Furthermore, populations within a pasture were likely colonized by seeds produced by founders of a neighbouring population within that pasture. These results have important ramifications for understanding conservation measures needed for this species and other epiphytic orchids.
Uploads
Papers by Dorset Trapnell