The objective of the present experiments was to study the effects of pulmonary inflammation induc... more The objective of the present experiments was to study the effects of pulmonary inflammation induced by subacute Sulfur-dioxide (SO 2 ) exposure on capsaicin-induced responses in isolated primary vagal sensory neurons and cough. Additionally, we examined the effects of SO 2 exposure on respiratory function and lung histology. All experiments were conducted 24 h after 4 days of subacute SO 2 (1000 ppm, 3 h/day for 4 days) exposure. In in vitro experiments, intracellular Ca 2+ concentrations were measured in single nodose ganglia cells isolated from SO 2 treated and control guinea pigs, using a fluorescence-based methodology. In nodose ganglia cells from SO 2 -exposed animals, intracellular Ca 2+ responses evoked by capsaicin (1  10 À7 and 1  10 À6 M) were significantly augmented (87% and 59%, respectively) compared to nodose ganglia from control animals. In vivo experiments, cough responses induced by a submaximal dose of aerosolized capsaicin (30 mM) were increased approximately 50% in SO 2 exposed animals compared to control animals. The enhanced cough response produced by SO 2 was inhibited by the corticosteroid, dexamethasone (10 mg/kg, p.o. b.i.d for 4 days and 10 mg/kg, p.o. once on day 5). In separate experiments, guinea pigs exposed to SO 2 displayed a decrease in respiratory frequency and minute ventilation and an increase in enhanced pause (PenH), a surrogate measure for pulmonary obstruction. Associated with the SO 2 -induced increase in cough and changes in respiratory parameters was an increase in BAL neutrophils. BAL neutrophil counts were 574 and 6917141 cells  10 3 /ml for air and SO 2 -exposed animals, respectively. The neutrophillic inflammation induced by SO 2 was attenuated by dexamethasone treatment. Finally, staining for collagen, smooth muscle and goblet cells showed inflammation, remodeling and goblet cell metaphasia in the SO 2 -exposed animals. Our results demonstrate that SO 2 exposure enhances TRPV1 receptor function at the level of the nodose ganglia. This effect occurs in parallel with an increase sensitivity of the cough response to capsaicin. r
Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is suffic... more Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multi-electrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04 - 0.1 Hz) in firing rate were also disrupted during apnea. Four hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity.
Diseases affecting pulmonary mechanics often result in changes to the coordination of swallow and... more Diseases affecting pulmonary mechanics often result in changes to the coordination of swallow and breathing. We hypothesize that during times of increased intrathoracic pressure, swallow suppresses ongoing expiratory drive to ensure bolus transport through the esophagus. To this end, we sought to determine the effects of swallow on abdominal electromyographic (EMG) activity during expiratory threshold loading in anesthetized cats and in awake-healthy adult humans. Expiratory threshold loads were applied to recruit abdominal motor activity during breathing, and swallow was triggered by infusion of water into the mouth. In both anesthetized cats and humans, expiratory cycles which contained swallows had a significant reduction in abdominal EMG activity, and a greater percentage of swallows were produced during inspiration and/or respiratory phase transitions. These results suggest that: a) spinal expiratory motor pathways play an important role in the execution of swallow, and b) a more complex mechanical relationship exists between breathing and swallow than has previously been envisioned.
Perspectives on Swallowing and Swallowing Disorders (Dysphagia), 2009
... Modulation of these neural networks regulates swallow apnea as a function of the presence of ... more ... Modulation of these neural networks regulates swallow apnea as a function of the presence of the bolus in the pharynx (Issa & Porostocky, 1994), size of the bolus (Martin et al., 1994), bolus consistency (Preiksaitis & Mills, 1996), ventilatory state (such as hypercapnia; Nishino ...
Studies were conducted to compare the first-breath responses of medullary Dorsal and Ventral Resp... more Studies were conducted to compare the first-breath responses of medullary Dorsal and Ventral Respiratory Group inspiratory (I) neurons to the mechanical loading (tracheal occlusion, TO) of inspiration in unanesthetized (decerebrate) and anesthetized (Dial) vagotomized cats, and to determine the sources of the sensory activity causing the changes in I-neuron activity. In decerebrate cats, TO resulted in a prolongation of the firing duration in 49% of the I-neurons. There was a delayed onset of firing in 7% of the I-neurons. The responses of I-neurons to TO in anesthetized cats were similar to the responses in decerebrate cats. Changes in I-neuron activity with TO were still present in cats with their cervical (C3-7) or thoracic (T1-9) dorsal roots cut, and absent when both cervical and thoracic dorsal roots were cut. The most probable sources of the cervical and thoracic afferent information altering medullary I-neuron activity during loading are the diaphragm and inspiratory intercostal muscles.
ABSTRACT This chapter discusses the concept of gray matter repair in the cervical spinal cord. Wi... more ABSTRACT This chapter discusses the concept of gray matter repair in the cervical spinal cord. With emphasis on gray matter repair in the injured spinal cord, the chapter reviews two separate areas of ongoing investigation. The first set of experiments concentrates on the phrenic motoneuron (PhMN) system as an experimental model for testing transplantation safety and efficacy, as well as for exploring possibilities for beneficially interfacing neuronal grafts with ongoing neuroplasticity. The objective is to gain a comprehensive view of functional neuroplasticity in the PhMN system and a perspective of how, at the segmental spinal level, the presence of novel neuronal populations, derived from primary fetal spinal cord tissue, affects spontaneous repair processes. The chapter also reviews the issue of defining alternative sources of donor tissue for gray matter repair. It describes the findings involving grafts of the neuronal precursor rich Ntera2 human cell line in chronic contusion lesions of the midcervical spinal cord. Both fetal tissue and the Ntera2 cell line provide important templates for the future experimental and clinical application of other neural and non-neural stem cell lines for neuronal replacement in the injured spinal cord, as well as other regions of the central nervous system (CNS).
The c-fos gene expression method was used to localize brainstem neurons functionally related to t... more The c-fos gene expression method was used to localize brainstem neurons functionally related to the tracheal-bronchial cough on 13 spontaneously breathing, pentobarbitone anesthetized cats. The level of Fos-like immunoreactivity (FLI) in 6 animals with repetitive coughs (170 ± 12) induced by mechanical stimulation of the tracheobronchial mucosa was compared to FLI in 7 control non-stimulated cats. Thirty-four nuclei were compared for the number of labeled cells. Enhanced cough FLI was found bilaterally at following brainstem structures, as compared to controls: In the medulla, FLI was increased in the medial, interstitial and ventrolateral subnuclei of the solitary tract (p < 0.02), in the retroambigual nucleus of the caudal medulla (p < 0.05), in the ambigual, paraambigual and retrofacial nuclei of the rostral medulla along with the lateral reticular nuclei, the ventrolateral reticular tegmental field (p < 0.05), and the raphe nuclei (p < 0.05). In pons, increased FLI was detected in the lateral parabrachial and Kölliker-Fuse nuclei (p < 0.01), in the posteroventral cochlear nuclei (p < 0.01), and the raphe midline (p < 0.05). Within the mesencephalon coughrelated FLI was enhanced at the rostral midline area (p < 0.05), but a decrease was found at its caudal part in the periaqueductal gray (p < 0.02). Results of this study suggest a large medullary -pontine -mesencephalic neuronal circuit involved in the control of the tracheal-bronchial cough in cats.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 15, 2003
By 2 months after unilateral cervical spinal cord injury (SCI), respiratory motor output resumes ... more By 2 months after unilateral cervical spinal cord injury (SCI), respiratory motor output resumes in the previously quiescent phrenic nerve. This activity is derived from bulbospinal pathways that cross the spinal midline caudal to the lesion (crossed phrenic pathways). To determine whether crossed phrenic pathways contribute to tidal volume in spinally injured rats, spontaneous breathing was measured in anesthetized C2 hemisected rats at 2 months after injury with an intact ipsilateral phrenic nerve, or with ipsilateral phrenicotomy performed at the time of the SCI (i.e., crossed phrenic pathways rendered ineffective) (dual injury). Ipsilateral phrenicotomy did not alter the rapid shallow eupneic breathing pattern in C2 injured rats. However, the ability to generate large inspiratory volumes after either vagotomy or during augmented breaths was impaired if crossed phrenic activity was abolished. We also investigated whether compensatory plasticity in contralateral motoneurons would ...
Because some bulbospinal respiratory premotor neurons have bilateral projections to the phrenic n... more Because some bulbospinal respiratory premotor neurons have bilateral projections to the phrenic nuclei, we investigated whether changes in contralateral phrenic motoneuron function would occur after unilateral axotomy via C 2 hemisection. Phrenic neurograms were recorded under baseline conditions and during hypercapnic and hypoxic challenge in C 2 hemisected, normal, and sham-operated rats at 1 and 2 months after injury. The rats were anesthetized, vagotomized, and mechanically ventilated. No group differences were seen in contralateral neurograms at 1 month after injury. At 2 months, however, there was a statistically significant decrease in respiratory rate (RR) at normocapnia, an elevated RR during hypoxia, and an attenuated increase in phrenic neurogram amplitude during hypercapnia in the C 2 -hemisected animals. To test whether C 2 hemisection had induced a supraspinal change in respiratory motor drive, we recorded ipsilateral and contralateral hypoglossal neurograms during hypercapnia. As with the phrenic motor function data, no change in hypoglossal output was evident until 2 months had elapsed when hypoglossal amplitudes were significantly decreased bilaterally. Last, the influence of serotonin-containing neurons on the injury-induced change in phrenic motoneuron function was examined in rats treated with the serotonin neurotoxin, 5,7-dihydroxytryptamine. Pretreatment with 5,7-dihydroxytryptamine prevented the effects of C 2 hemisection on contralateral phrenic neurogram amplitude and normalized the change in RR during hypoxia. The results of this study show novel neuroplastic changes in segmental and brainstem respiratory motor output after C 2 hemisection that coincided with the spontaneous recovery of some ipsilateral phrenic function. Some of these effects may be modulated by serotonin-containing neurons.
Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of ai... more Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of airway protective behaviors. These airway protective behaviors include augmented breaths, the cough reflex, and expiration reflexes. Functional recovery of these behaviors has been reported after spinal cord injury. In humans, evidence for functional recovery is restricted to alterations in motor strategy and changes in the frequency of occurrence of these behaviors. In animal models, compensatory alterations in motor strategy have been identified. Crossed descending respiratory motor pathways at the thoracic spinal cord levels exist that are composed of crossed premotor axons, local circuit interneurons, and propriospinal neurons. These pathways can collectively form a substrate that supports maintenance and/or recovery of function, especially after asymmetric spinal cord injury. Local sprouting of premotor axons in the thoracic spinal cord also can occur following chronic spinal cord injury. These mechanisms may contribute to functional resiliency of the cough reflex that has been observed following chronic spinal cord injury in the cat.
In this paper we review respiratory recovery following C2 spinal cord hemisection (C2HS) and intr... more In this paper we review respiratory recovery following C2 spinal cord hemisection (C2HS) and introduce evidence for ipsilateral (IL) and contralateral (CL) phrenic motor neuron (PhrMN) synchrony post-C2HS. Rats have rapid, shallow breathing after C2HS but ventilation (ṾE) is maintained. ṾE deficits occur during hypercapnic challenge reflecting reduced tidal volume (VT), but modest recovery occurs by 12 wks post-injury. IL PhrMN activity recovers in a time-dependent manner after C2HS, and neuroanatomical evidence suggests that this may involve both mono-and polysynaptic pathways. Accordingly, we used cross-correlation to examine IL and CL PhrMN synchrony after C2HS. Uninjured rats showed correlogram peaks consistent with synchronous activity and common synaptic input. Correlogram peaks were absent at 2 wks post-C2HS, but by 12 wks 50% of rats showed peaks occurring with a 1.1±0.19 ms lag from zero on the abscissa. These data are consistent with prolonged conduction time to IL (vs. CL) PhrMNs and the possibility of polysynaptic inputs to IL PhrMNs after chronic C2HS.
Cough and breathing are generated by a common muscular system. However, these two behaviors diffe... more Cough and breathing are generated by a common muscular system. However, these two behaviors differ significantly in their mechanical features and regulation. The current conceptualization of the neurogenic mechanism for these behaviors holds that the multifunctional respiratory pattern generator undergoes reconfiguration to produce cough. Our previous results indicate the presence of a functional cough gate mechanism that controls the excitability of this airway defensive behavior, but is not involved in the regulation of breathing. We propose that the neurogenesis of cough, breathing, and other nonbreathing behaviors is controlled by a larger network, of which the respiratory pattern generator is part. This network we term a holarchical system. This system is governed by functional control elements known as holons, which confer unique regulatory features to each behavior. The cough gate is an example of such a holon. Neurons that participate in a cough holon may include behavior selective elements. That is, neurons that are either specifically recruited during cough and/or tonically-active neurons with little or no modulation during breathing but with significant alterations in discharge during coughing. We also propose that the holarchical system is responsible for the orderly expression of different airway defensive behaviors such that each motor task is executed in a temporally and mechanically discrete manner. We further propose that a holon controlling one airway defensive behavior can regulate the excitability of, and cooperate with, holons unique to other behaviors. As such, co-expression of multiple rhythmic behaviors such as cough and swallow can occur without compromising airway defense.
The urge-to-cough is a respiratory sensation that precedes the cough motor response. Since affect... more The urge-to-cough is a respiratory sensation that precedes the cough motor response. Since affective state modulates the perception of respiratory sensations such as dyspnoea, we wanted to test whether nicotine, an anxiolytic, would modulate the urge-to-cough and hence, the cough motor response. We hypothesized that withdrawal from and administration of nicotine in smoking subjects would modulate their anxiety levels, urge-to-cough and cough motor response to capsaicin stimulation. Twenty smoking (SM) adults (8F, 12M; 22+/-3 years; 2.9+/-2.0 pack years) and matched non-smoking (NS) controls (22+/-2 years) were presented with randomized concentrations of capsaicin (0-200 microM) before and after nicotine (SM only) gum and/or placebo (SM and NS) gum. Subjects rated their urge-to-cough using a Borg scale at the end of each capsaicin presentation. Cough number and cough motor pattern were determined from airflow tracings. Subjects completed State-Trait Anxiety Inventory (STAI) questionnaires before and after gum administration. SM subjects that withdrew from cigarette smoking for 12 h exhibited an increase in anxiety scores, a greater number of coughs and higher urge-to-cough ratings compared to NS subjects. Administration of nicotine gum reduced anxiety scores, cough number and urge-to-cough ratings to match the NS subjects. There was no effect of placebo gum on any of the measured parameters in the SM and NS groups. The results from this study suggest that modulation of the central neural state with nicotine withdrawal and administration in young smoking adults is associated with a change in anxiety levels which in turn modulates the perceptual and motor response to irritant cough stimulants.
The airway defensive response to tussive agents, such as capsaicin, is frequently assessed by cou... more The airway defensive response to tussive agents, such as capsaicin, is frequently assessed by counting the number of cough sounds, or expulsive events. This method does not identify or differentiate important respiratory events that occur in the respiratory muscles and lungs, which are critical in assessing airway defensive responses. The purpose of this study was to characterize the airway defensive behaviours (cough and expiration reflex) to capsaicin exposure in humans. We observed complex motor behaviours in response to capsaicin exposure. These behaviours were defined as cough reacceleration (CRn) and expiration reflex (ERn), where n is the number of expulsive events with and without a preceding inspiratory phase, respectively. Airway defensive responses were defined in terms of frequency (number of expulsive events), strength (activation of abdominal muscles) and behaviour type (CRn vs. ERn). Thirty-six subjects (15 females, 24+/-4 yr) were instrumented with EMG electrodes placed over the rectus abdominis (RA), external abdominal oblique (EO) and the 8th intercostal space (IC8). A custom-designed mouth pneumotachograph was used to assess the airflow acceleration, plateau velocity and phase duration of the expulsive phase. Subjects inhaled seven concentrations of capsaicin (5-200 microM) in a randomized block order. The total number of expulsive events (frequency) and the sum of integrated EMG for the IC8, RA and EO (strength) increased in a curvilinear fashion. Differentiating the airway defense responses into type demonstrated predominately CR1 and CR2 (i.e. inspiration followed by one and two expulsive events, respectively) with very few ER&#39;s at &lt;50 microM capsaicin. At higher concentrations (&gt;50 microM) ER&#39;s with one or more expulsive events (ER1) appeared, and the number of CR&#39;s with three or more expulsive events (CR3) increased. The decrease in EMG activation and airflow measurements with each successive expulsive event suggests a decline in power and shear force as the number of expulsive events increased. Therefore, the airway defensive response to capsaicin is a complex motor pattern that functions to coordinate ER&#39;s and CR&#39;s with differing numbers of expulsive events possibly to prevent aspirations and keep air moving to promote clearance.
We have shown previously in normal subjects that a sensory measure, the Urge-to-Cough rating, inc... more We have shown previously in normal subjects that a sensory measure, the Urge-to-Cough rating, increases at concentrations of inhaled capsaicin that are lower than those necessary to elicit reflex cough. This finding suggests that the Urge-to-Cough may represent an index of the cough response. Research on cough in the human has most often employed challenge with inhaled capsaicin to induce reflex cough. Current measures of cough sensitivity in the human provide no information regarding the intensity of cough. The influence of codeine on cough perceptual sensitivity and the relationship to cough intensity with capsaicin-induced cough in normal subjects has not been evaluated. This study determined the effect of codeine on capsaicin-induced cough perceptual sensitivity and motor response in normal subjects in a double-blind, placebo-controlled, crossover study. This approach investigated the relevance of cough sensitivity, intensity, and sensory modalities in the assessment of cough suppression in humans. This study consisted of three experimental trials: administration of placebo, 30 mg codeine and 60 mg codeine. The study was double-blinded. The order of the three trials was randomized. Respiratory motor pattern was recorded with EMGs from the rectus abdominis, lateral abdominal muscles and eighth intercostal space. The subjects leaned into a fume hood to inspire deeply for 2 s once through a mouthpiece connected to the nebulizer. A modified Borg scale was used to estimate their Urge-to-Cough. The experimental trial consisted of eight test solutions of 0-200 microM capsaicin. Each solution was presented three times in a randomized block order for a total of 24 presentations. The lowest capsaicin concentration to elicit a cough was determined. The lowest capsaicin concentration to elicit an Urge-to-Cough greater than zero was identified. The Urge-to-Cough sensitivity was determined from the log-log slope. For placebo, the Urge-to-Cough was zero with inhalation of the vehicle and no coughs were observed. The threshold capsaicin concentration for subjects to report an Urge-to-Cough was 15.6 microM (+/-2.6 SEM). The capsaicin concentration threshold for eliciting a cough was significantly greater, 39.3 microM (+/-5.6 SEM). As the capsaicin concentration increased, the magnitude estimation of the Urge to-Cough increased. The slope of the log-log relationship for the Urge-to-Cough was 0.94 (+/-0.07 SEM). As the capsaicin concentration increased, the number and intensity of the coughs increased. The administration of 30 and 60 mg codeine had no significant effect on the threshold capsaicin concentration for the Urge-to-Cough. There was also no significant codeine effect on the slope of the log-log Urge-to-Cough relationship. Thirty and sixty milligram codeine had no significant effect on the relationship between the capsaicin concentration and the number and intensity of the coughs. The results of this study demonstrate that the threshold for a subject to perceive an Urge-to-Cough was less than the capsaicin concentration that elicits the cough motor response. There was a direct relationship between the sensory intensity (magnitude estimation of the Urge-to-Cough) and the cough number and intensity. Thus, as the sense of an Urge-to-Cough increased the cough motor response increased. Neither the 30 nor 60 mg codeine affected the perceptual or motor sensitivity to capsaicin-induced cough. These results showed that the initial threshold for responding to capsaicin-induced cough is the perception of an Urge-to-Cough, followed by a motor cough response if the capsaicin is increased above the perceptual threshold. As the capsaicin concentration increases, both the perceptual need to cough and the cough motor response increase. The response of subjects to inhalation of capsaicin consisted of both a sensory component leading to perception of an Urge-to-Cough and motor cough behavior.
The objective of the present experiments was to study the effects of pulmonary inflammation induc... more The objective of the present experiments was to study the effects of pulmonary inflammation induced by subacute Sulfur-dioxide (SO 2 ) exposure on capsaicin-induced responses in isolated primary vagal sensory neurons and cough. Additionally, we examined the effects of SO 2 exposure on respiratory function and lung histology. All experiments were conducted 24 h after 4 days of subacute SO 2 (1000 ppm, 3 h/day for 4 days) exposure. In in vitro experiments, intracellular Ca 2+ concentrations were measured in single nodose ganglia cells isolated from SO 2 treated and control guinea pigs, using a fluorescence-based methodology. In nodose ganglia cells from SO 2 -exposed animals, intracellular Ca 2+ responses evoked by capsaicin (1  10 À7 and 1  10 À6 M) were significantly augmented (87% and 59%, respectively) compared to nodose ganglia from control animals. In vivo experiments, cough responses induced by a submaximal dose of aerosolized capsaicin (30 mM) were increased approximately 50% in SO 2 exposed animals compared to control animals. The enhanced cough response produced by SO 2 was inhibited by the corticosteroid, dexamethasone (10 mg/kg, p.o. b.i.d for 4 days and 10 mg/kg, p.o. once on day 5). In separate experiments, guinea pigs exposed to SO 2 displayed a decrease in respiratory frequency and minute ventilation and an increase in enhanced pause (PenH), a surrogate measure for pulmonary obstruction. Associated with the SO 2 -induced increase in cough and changes in respiratory parameters was an increase in BAL neutrophils. BAL neutrophil counts were 574 and 6917141 cells  10 3 /ml for air and SO 2 -exposed animals, respectively. The neutrophillic inflammation induced by SO 2 was attenuated by dexamethasone treatment. Finally, staining for collagen, smooth muscle and goblet cells showed inflammation, remodeling and goblet cell metaphasia in the SO 2 -exposed animals. Our results demonstrate that SO 2 exposure enhances TRPV1 receptor function at the level of the nodose ganglia. This effect occurs in parallel with an increase sensitivity of the cough response to capsaicin. r
Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is suffic... more Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multi-electrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04 - 0.1 Hz) in firing rate were also disrupted during apnea. Four hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity.
Diseases affecting pulmonary mechanics often result in changes to the coordination of swallow and... more Diseases affecting pulmonary mechanics often result in changes to the coordination of swallow and breathing. We hypothesize that during times of increased intrathoracic pressure, swallow suppresses ongoing expiratory drive to ensure bolus transport through the esophagus. To this end, we sought to determine the effects of swallow on abdominal electromyographic (EMG) activity during expiratory threshold loading in anesthetized cats and in awake-healthy adult humans. Expiratory threshold loads were applied to recruit abdominal motor activity during breathing, and swallow was triggered by infusion of water into the mouth. In both anesthetized cats and humans, expiratory cycles which contained swallows had a significant reduction in abdominal EMG activity, and a greater percentage of swallows were produced during inspiration and/or respiratory phase transitions. These results suggest that: a) spinal expiratory motor pathways play an important role in the execution of swallow, and b) a more complex mechanical relationship exists between breathing and swallow than has previously been envisioned.
Perspectives on Swallowing and Swallowing Disorders (Dysphagia), 2009
... Modulation of these neural networks regulates swallow apnea as a function of the presence of ... more ... Modulation of these neural networks regulates swallow apnea as a function of the presence of the bolus in the pharynx (Issa &amp;amp; Porostocky, 1994), size of the bolus (Martin et al., 1994), bolus consistency (Preiksaitis &amp;amp; Mills, 1996), ventilatory state (such as hypercapnia; Nishino ...
Studies were conducted to compare the first-breath responses of medullary Dorsal and Ventral Resp... more Studies were conducted to compare the first-breath responses of medullary Dorsal and Ventral Respiratory Group inspiratory (I) neurons to the mechanical loading (tracheal occlusion, TO) of inspiration in unanesthetized (decerebrate) and anesthetized (Dial) vagotomized cats, and to determine the sources of the sensory activity causing the changes in I-neuron activity. In decerebrate cats, TO resulted in a prolongation of the firing duration in 49% of the I-neurons. There was a delayed onset of firing in 7% of the I-neurons. The responses of I-neurons to TO in anesthetized cats were similar to the responses in decerebrate cats. Changes in I-neuron activity with TO were still present in cats with their cervical (C3-7) or thoracic (T1-9) dorsal roots cut, and absent when both cervical and thoracic dorsal roots were cut. The most probable sources of the cervical and thoracic afferent information altering medullary I-neuron activity during loading are the diaphragm and inspiratory intercostal muscles.
ABSTRACT This chapter discusses the concept of gray matter repair in the cervical spinal cord. Wi... more ABSTRACT This chapter discusses the concept of gray matter repair in the cervical spinal cord. With emphasis on gray matter repair in the injured spinal cord, the chapter reviews two separate areas of ongoing investigation. The first set of experiments concentrates on the phrenic motoneuron (PhMN) system as an experimental model for testing transplantation safety and efficacy, as well as for exploring possibilities for beneficially interfacing neuronal grafts with ongoing neuroplasticity. The objective is to gain a comprehensive view of functional neuroplasticity in the PhMN system and a perspective of how, at the segmental spinal level, the presence of novel neuronal populations, derived from primary fetal spinal cord tissue, affects spontaneous repair processes. The chapter also reviews the issue of defining alternative sources of donor tissue for gray matter repair. It describes the findings involving grafts of the neuronal precursor rich Ntera2 human cell line in chronic contusion lesions of the midcervical spinal cord. Both fetal tissue and the Ntera2 cell line provide important templates for the future experimental and clinical application of other neural and non-neural stem cell lines for neuronal replacement in the injured spinal cord, as well as other regions of the central nervous system (CNS).
The c-fos gene expression method was used to localize brainstem neurons functionally related to t... more The c-fos gene expression method was used to localize brainstem neurons functionally related to the tracheal-bronchial cough on 13 spontaneously breathing, pentobarbitone anesthetized cats. The level of Fos-like immunoreactivity (FLI) in 6 animals with repetitive coughs (170 ± 12) induced by mechanical stimulation of the tracheobronchial mucosa was compared to FLI in 7 control non-stimulated cats. Thirty-four nuclei were compared for the number of labeled cells. Enhanced cough FLI was found bilaterally at following brainstem structures, as compared to controls: In the medulla, FLI was increased in the medial, interstitial and ventrolateral subnuclei of the solitary tract (p < 0.02), in the retroambigual nucleus of the caudal medulla (p < 0.05), in the ambigual, paraambigual and retrofacial nuclei of the rostral medulla along with the lateral reticular nuclei, the ventrolateral reticular tegmental field (p < 0.05), and the raphe nuclei (p < 0.05). In pons, increased FLI was detected in the lateral parabrachial and Kölliker-Fuse nuclei (p < 0.01), in the posteroventral cochlear nuclei (p < 0.01), and the raphe midline (p < 0.05). Within the mesencephalon coughrelated FLI was enhanced at the rostral midline area (p < 0.05), but a decrease was found at its caudal part in the periaqueductal gray (p < 0.02). Results of this study suggest a large medullary -pontine -mesencephalic neuronal circuit involved in the control of the tracheal-bronchial cough in cats.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 15, 2003
By 2 months after unilateral cervical spinal cord injury (SCI), respiratory motor output resumes ... more By 2 months after unilateral cervical spinal cord injury (SCI), respiratory motor output resumes in the previously quiescent phrenic nerve. This activity is derived from bulbospinal pathways that cross the spinal midline caudal to the lesion (crossed phrenic pathways). To determine whether crossed phrenic pathways contribute to tidal volume in spinally injured rats, spontaneous breathing was measured in anesthetized C2 hemisected rats at 2 months after injury with an intact ipsilateral phrenic nerve, or with ipsilateral phrenicotomy performed at the time of the SCI (i.e., crossed phrenic pathways rendered ineffective) (dual injury). Ipsilateral phrenicotomy did not alter the rapid shallow eupneic breathing pattern in C2 injured rats. However, the ability to generate large inspiratory volumes after either vagotomy or during augmented breaths was impaired if crossed phrenic activity was abolished. We also investigated whether compensatory plasticity in contralateral motoneurons would ...
Because some bulbospinal respiratory premotor neurons have bilateral projections to the phrenic n... more Because some bulbospinal respiratory premotor neurons have bilateral projections to the phrenic nuclei, we investigated whether changes in contralateral phrenic motoneuron function would occur after unilateral axotomy via C 2 hemisection. Phrenic neurograms were recorded under baseline conditions and during hypercapnic and hypoxic challenge in C 2 hemisected, normal, and sham-operated rats at 1 and 2 months after injury. The rats were anesthetized, vagotomized, and mechanically ventilated. No group differences were seen in contralateral neurograms at 1 month after injury. At 2 months, however, there was a statistically significant decrease in respiratory rate (RR) at normocapnia, an elevated RR during hypoxia, and an attenuated increase in phrenic neurogram amplitude during hypercapnia in the C 2 -hemisected animals. To test whether C 2 hemisection had induced a supraspinal change in respiratory motor drive, we recorded ipsilateral and contralateral hypoglossal neurograms during hypercapnia. As with the phrenic motor function data, no change in hypoglossal output was evident until 2 months had elapsed when hypoglossal amplitudes were significantly decreased bilaterally. Last, the influence of serotonin-containing neurons on the injury-induced change in phrenic motoneuron function was examined in rats treated with the serotonin neurotoxin, 5,7-dihydroxytryptamine. Pretreatment with 5,7-dihydroxytryptamine prevented the effects of C 2 hemisection on contralateral phrenic neurogram amplitude and normalized the change in RR during hypoxia. The results of this study show novel neuroplastic changes in segmental and brainstem respiratory motor output after C 2 hemisection that coincided with the spontaneous recovery of some ipsilateral phrenic function. Some of these effects may be modulated by serotonin-containing neurons.
Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of ai... more Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of airway protective behaviors. These airway protective behaviors include augmented breaths, the cough reflex, and expiration reflexes. Functional recovery of these behaviors has been reported after spinal cord injury. In humans, evidence for functional recovery is restricted to alterations in motor strategy and changes in the frequency of occurrence of these behaviors. In animal models, compensatory alterations in motor strategy have been identified. Crossed descending respiratory motor pathways at the thoracic spinal cord levels exist that are composed of crossed premotor axons, local circuit interneurons, and propriospinal neurons. These pathways can collectively form a substrate that supports maintenance and/or recovery of function, especially after asymmetric spinal cord injury. Local sprouting of premotor axons in the thoracic spinal cord also can occur following chronic spinal cord injury. These mechanisms may contribute to functional resiliency of the cough reflex that has been observed following chronic spinal cord injury in the cat.
In this paper we review respiratory recovery following C2 spinal cord hemisection (C2HS) and intr... more In this paper we review respiratory recovery following C2 spinal cord hemisection (C2HS) and introduce evidence for ipsilateral (IL) and contralateral (CL) phrenic motor neuron (PhrMN) synchrony post-C2HS. Rats have rapid, shallow breathing after C2HS but ventilation (ṾE) is maintained. ṾE deficits occur during hypercapnic challenge reflecting reduced tidal volume (VT), but modest recovery occurs by 12 wks post-injury. IL PhrMN activity recovers in a time-dependent manner after C2HS, and neuroanatomical evidence suggests that this may involve both mono-and polysynaptic pathways. Accordingly, we used cross-correlation to examine IL and CL PhrMN synchrony after C2HS. Uninjured rats showed correlogram peaks consistent with synchronous activity and common synaptic input. Correlogram peaks were absent at 2 wks post-C2HS, but by 12 wks 50% of rats showed peaks occurring with a 1.1±0.19 ms lag from zero on the abscissa. These data are consistent with prolonged conduction time to IL (vs. CL) PhrMNs and the possibility of polysynaptic inputs to IL PhrMNs after chronic C2HS.
Cough and breathing are generated by a common muscular system. However, these two behaviors diffe... more Cough and breathing are generated by a common muscular system. However, these two behaviors differ significantly in their mechanical features and regulation. The current conceptualization of the neurogenic mechanism for these behaviors holds that the multifunctional respiratory pattern generator undergoes reconfiguration to produce cough. Our previous results indicate the presence of a functional cough gate mechanism that controls the excitability of this airway defensive behavior, but is not involved in the regulation of breathing. We propose that the neurogenesis of cough, breathing, and other nonbreathing behaviors is controlled by a larger network, of which the respiratory pattern generator is part. This network we term a holarchical system. This system is governed by functional control elements known as holons, which confer unique regulatory features to each behavior. The cough gate is an example of such a holon. Neurons that participate in a cough holon may include behavior selective elements. That is, neurons that are either specifically recruited during cough and/or tonically-active neurons with little or no modulation during breathing but with significant alterations in discharge during coughing. We also propose that the holarchical system is responsible for the orderly expression of different airway defensive behaviors such that each motor task is executed in a temporally and mechanically discrete manner. We further propose that a holon controlling one airway defensive behavior can regulate the excitability of, and cooperate with, holons unique to other behaviors. As such, co-expression of multiple rhythmic behaviors such as cough and swallow can occur without compromising airway defense.
The urge-to-cough is a respiratory sensation that precedes the cough motor response. Since affect... more The urge-to-cough is a respiratory sensation that precedes the cough motor response. Since affective state modulates the perception of respiratory sensations such as dyspnoea, we wanted to test whether nicotine, an anxiolytic, would modulate the urge-to-cough and hence, the cough motor response. We hypothesized that withdrawal from and administration of nicotine in smoking subjects would modulate their anxiety levels, urge-to-cough and cough motor response to capsaicin stimulation. Twenty smoking (SM) adults (8F, 12M; 22+/-3 years; 2.9+/-2.0 pack years) and matched non-smoking (NS) controls (22+/-2 years) were presented with randomized concentrations of capsaicin (0-200 microM) before and after nicotine (SM only) gum and/or placebo (SM and NS) gum. Subjects rated their urge-to-cough using a Borg scale at the end of each capsaicin presentation. Cough number and cough motor pattern were determined from airflow tracings. Subjects completed State-Trait Anxiety Inventory (STAI) questionnaires before and after gum administration. SM subjects that withdrew from cigarette smoking for 12 h exhibited an increase in anxiety scores, a greater number of coughs and higher urge-to-cough ratings compared to NS subjects. Administration of nicotine gum reduced anxiety scores, cough number and urge-to-cough ratings to match the NS subjects. There was no effect of placebo gum on any of the measured parameters in the SM and NS groups. The results from this study suggest that modulation of the central neural state with nicotine withdrawal and administration in young smoking adults is associated with a change in anxiety levels which in turn modulates the perceptual and motor response to irritant cough stimulants.
The airway defensive response to tussive agents, such as capsaicin, is frequently assessed by cou... more The airway defensive response to tussive agents, such as capsaicin, is frequently assessed by counting the number of cough sounds, or expulsive events. This method does not identify or differentiate important respiratory events that occur in the respiratory muscles and lungs, which are critical in assessing airway defensive responses. The purpose of this study was to characterize the airway defensive behaviours (cough and expiration reflex) to capsaicin exposure in humans. We observed complex motor behaviours in response to capsaicin exposure. These behaviours were defined as cough reacceleration (CRn) and expiration reflex (ERn), where n is the number of expulsive events with and without a preceding inspiratory phase, respectively. Airway defensive responses were defined in terms of frequency (number of expulsive events), strength (activation of abdominal muscles) and behaviour type (CRn vs. ERn). Thirty-six subjects (15 females, 24+/-4 yr) were instrumented with EMG electrodes placed over the rectus abdominis (RA), external abdominal oblique (EO) and the 8th intercostal space (IC8). A custom-designed mouth pneumotachograph was used to assess the airflow acceleration, plateau velocity and phase duration of the expulsive phase. Subjects inhaled seven concentrations of capsaicin (5-200 microM) in a randomized block order. The total number of expulsive events (frequency) and the sum of integrated EMG for the IC8, RA and EO (strength) increased in a curvilinear fashion. Differentiating the airway defense responses into type demonstrated predominately CR1 and CR2 (i.e. inspiration followed by one and two expulsive events, respectively) with very few ER&#39;s at &lt;50 microM capsaicin. At higher concentrations (&gt;50 microM) ER&#39;s with one or more expulsive events (ER1) appeared, and the number of CR&#39;s with three or more expulsive events (CR3) increased. The decrease in EMG activation and airflow measurements with each successive expulsive event suggests a decline in power and shear force as the number of expulsive events increased. Therefore, the airway defensive response to capsaicin is a complex motor pattern that functions to coordinate ER&#39;s and CR&#39;s with differing numbers of expulsive events possibly to prevent aspirations and keep air moving to promote clearance.
We have shown previously in normal subjects that a sensory measure, the Urge-to-Cough rating, inc... more We have shown previously in normal subjects that a sensory measure, the Urge-to-Cough rating, increases at concentrations of inhaled capsaicin that are lower than those necessary to elicit reflex cough. This finding suggests that the Urge-to-Cough may represent an index of the cough response. Research on cough in the human has most often employed challenge with inhaled capsaicin to induce reflex cough. Current measures of cough sensitivity in the human provide no information regarding the intensity of cough. The influence of codeine on cough perceptual sensitivity and the relationship to cough intensity with capsaicin-induced cough in normal subjects has not been evaluated. This study determined the effect of codeine on capsaicin-induced cough perceptual sensitivity and motor response in normal subjects in a double-blind, placebo-controlled, crossover study. This approach investigated the relevance of cough sensitivity, intensity, and sensory modalities in the assessment of cough suppression in humans. This study consisted of three experimental trials: administration of placebo, 30 mg codeine and 60 mg codeine. The study was double-blinded. The order of the three trials was randomized. Respiratory motor pattern was recorded with EMGs from the rectus abdominis, lateral abdominal muscles and eighth intercostal space. The subjects leaned into a fume hood to inspire deeply for 2 s once through a mouthpiece connected to the nebulizer. A modified Borg scale was used to estimate their Urge-to-Cough. The experimental trial consisted of eight test solutions of 0-200 microM capsaicin. Each solution was presented three times in a randomized block order for a total of 24 presentations. The lowest capsaicin concentration to elicit a cough was determined. The lowest capsaicin concentration to elicit an Urge-to-Cough greater than zero was identified. The Urge-to-Cough sensitivity was determined from the log-log slope. For placebo, the Urge-to-Cough was zero with inhalation of the vehicle and no coughs were observed. The threshold capsaicin concentration for subjects to report an Urge-to-Cough was 15.6 microM (+/-2.6 SEM). The capsaicin concentration threshold for eliciting a cough was significantly greater, 39.3 microM (+/-5.6 SEM). As the capsaicin concentration increased, the magnitude estimation of the Urge to-Cough increased. The slope of the log-log relationship for the Urge-to-Cough was 0.94 (+/-0.07 SEM). As the capsaicin concentration increased, the number and intensity of the coughs increased. The administration of 30 and 60 mg codeine had no significant effect on the threshold capsaicin concentration for the Urge-to-Cough. There was also no significant codeine effect on the slope of the log-log Urge-to-Cough relationship. Thirty and sixty milligram codeine had no significant effect on the relationship between the capsaicin concentration and the number and intensity of the coughs. The results of this study demonstrate that the threshold for a subject to perceive an Urge-to-Cough was less than the capsaicin concentration that elicits the cough motor response. There was a direct relationship between the sensory intensity (magnitude estimation of the Urge-to-Cough) and the cough number and intensity. Thus, as the sense of an Urge-to-Cough increased the cough motor response increased. Neither the 30 nor 60 mg codeine affected the perceptual or motor sensitivity to capsaicin-induced cough. These results showed that the initial threshold for responding to capsaicin-induced cough is the perception of an Urge-to-Cough, followed by a motor cough response if the capsaicin is increased above the perceptual threshold. As the capsaicin concentration increases, both the perceptual need to cough and the cough motor response increase. The response of subjects to inhalation of capsaicin consisted of both a sensory component leading to perception of an Urge-to-Cough and motor cough behavior.
Uploads
Papers by Donald Bolser