Papers by Daniele Moretti

Chemical Physics, 2002
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equ... more A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α ∈ (0, 2] and skewness θ (|θ| ≤ min {α, 2 − α}), and the first-order time derivative with a Caputo derivative of order β ∈ (0, 1] . Such evolution equation implies for the flux a fractional Fick's law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation.
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equ... more A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. The fundamental solution (for the {Cauchy} problem) of the fractional diffusion equations can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to a given fractional diffusion equation.
Physica A-statistical Mechanics and Its Applications, 2002
We present a variety of models of random walk, discrete in space and time, suitable for simulatin... more We present a variety of models of random walk, discrete in space and time, suitable for simulating random variables whose probability density obeys a space-time fractional di usion equation.
Time Fractional Diffusion: A Discrete Random Walk Approach
Nonlinear Dynamics, 2002
The time fractional diffusion equation is obtained from the standarddiffusion equation by replaci... more The time fractional diffusion equation is obtained from the standarddiffusion equation by replacing the first-order time derivative with afractional derivative of order β ∋ (0, 1). From a physicalview-point this generalized diffusion equation is obtained from afractional Fick law which describes transport processes with longmemory. The fundamental solution for the Cauchy problem is interpretedas a probability density of a self-similar non-Markovian stochasticprocess related to a phenomenon of slow anomalous diffusion. By adoptinga suitable finite-difference scheme of solution, we generate discretemodels of random walk suitable for simulating random variables whosespatial probability density evolves in time according to this fractionaldiffusion equation.
Uploads
Papers by Daniele Moretti