Papers by DIEGO ALEJANDRO VALENCIA CIFUENTES

SIAM Journal on Discrete Mathematics, 2016
Chordal structure and bounded treewidth allow for efficient computation in numerical linear algeb... more Chordal structure and bounded treewidth allow for efficient computation in numerical linear algebra, graphical models, constraint satisfaction, and many other areas. In this paper, we begin the study of how to exploit chordal structure in computational algebraic geometry-in particular, for solving polynomial systems. The structure of a system of polynomial equations can be described in terms of a graph. By carefully exploiting the properties of this graph (in particular, its chordal completions), more efficient algorithms can be developed. To this end, we develop a new technique, which we refer to as chordal elimination, that relies on elimination theory and Gröbner bases. By maintaining graph structure throughout the process, chordal elimination can outperform standard Gröbner bases algorithms in many cases. The reason is because all computations are done on "smaller" rings of size equal to the treewidth of the graph (instead of the total number of variables). In particular, for a restricted class of ideals, the computational complexity is linear in the number of variables. Chordal structure arises in many relevant applications. We demonstrate the suitability of our methods in examples from graph colorings, cryptography, sensor localization, and differential equations.
The degree chromatic polynomial $Pm(G,k)$ of a graph $G$ counts the number of $k$-colorings in wh... more The degree chromatic polynomial $Pm(G,k)$ of a graph $G$ counts the number of $k$-colorings in which no vertex has $m$ adjacent vertices of its same color. We prove Humpert and Martin's conjecture on the leading terms of the degree chromatic polynomial of a tree.
Uploads
Papers by DIEGO ALEJANDRO VALENCIA CIFUENTES