Papers by DANIEL PAIXÃO TINOCO
Familia, migración y reproducción social en la micro región Ahitic, municipio de Platón Sánchez, Veracruz
En este articulo los autores presentan los primeros resultados de una investigacion realizada a m... more En este articulo los autores presentan los primeros resultados de una investigacion realizada a mediados de 2014 en seis comunidades indigenas, como parte de la micro region Ahitic, municipio de Platon Sanchez, estado de Veracruz, Mexico, que recogio informacion sobre las familias residentes y la incidencia de la migracion entre sus miembros. Parten de la exposicion del enfoque teorico-metodologico que oriento el estudio, continuan con el analisis de las caracteristicas de las familias y los hogares y, posteriormente, estudian la incidencia de la emigracion de los hijos en la permanencia de las pautas culturales relativas a la reproduccion familiar en la region

Applicable Algebra in Engineering, Communication and Computing
Kostant's weight q-multiplicity formula is an alternating sum over a finite group known as the We... more Kostant's weight q-multiplicity formula is an alternating sum over a finite group known as the Weyl group, whose terms involve the q-analog of Kostant's partition function. The q-analog of the partition function is a polynomial-valued function defined by ℘q(ξ) = k i=0 c i q i , where c i is the number of ways the weight ξ can be written as a sum of exactly i positive roots of a Lie algebra g. The evaluation of the q-multiplicity formula at q = 1 recovers the multiplicity of a weight in an irreducible highest weight representation of g. In this paper, we specialize to the Lie algebra sp 6 (C) and we provide a closed formula for the q-analog of Kostant's partition function, which extends recent results of Shahi, Refaghat, and Marefat. We also describe the supporting sets of the multiplicity formula (known as the Weyl alternation sets of sp 6 (C)), and use these results to provide a closed formula for the q-multiplicity for any pair of dominant integral weights of sp 6 (C). Throughout this work, we provide code to facilitate these computations. 2 α∈Φ + α with Φ + being a set of positive roots of g. The terms of the alternating sum in Equation (1.1) are values of Kostant's partition function, which we denote by ℘, and which counts the number of ways to express its input as a nonnegative integral linear combination of the positive roots in Φ +. A well-known generalization of Kostant's weight multiplicity formula, due to Lusztig [17], is known as the q-analog of Kostant's weight multiplicity formula, and it replaces the partition function ℘ with its qanalog, denoted ℘ q. The q-analog of the partition function is defined as follows: For a weight ξ, ℘ q is a polynomial-valued function:
Uploads
Papers by DANIEL PAIXÃO TINOCO