Papers by Christian Berens

Journal of Visualized Experiments, 2015
The technique presented here allows one to analyze at which step a target protein, or alternative... more The technique presented here allows one to analyze at which step a target protein, or alternatively a small molecule, interacts with the components of a signaling pathway. The method is based, on the one hand, on the inducible expression of a specific protein to initiate a signaling event at a defined and predetermined step in the selected signaling cascade. Concomitant expression, on the other hand, of the gene of interest then allows the investigator to evaluate if the activity of the expressed target protein is located upstream or downstream of the initiated signaling event, depending on the readout of the signaling pathway that is obtained. Here, the apoptotic cascade was selected as a defined signaling pathway to demonstrate protocol functionality. Pathogenic bacteria, such as Coxiella burnetii, translocate effector proteins that interfere with host cell death induction in the host cell to ensure bacterial survival in the cell and to promote their dissemination in the organism. The C. burnetii effector protein CaeB effectively inhibits host cell death after induction of apoptosis with UV-light or with staurosporine. To narrow down at which step CaeB interferes with the propagation of the apoptotic signal, selected proteins with well-characterized pro-apoptotic activity were expressed transiently in a doxycycline-inducible manner. If CaeB acts upstream of these proteins, apoptosis will proceed unhindered. If CaeB acts downstream, cell death will be inhibited. The test proteins selected were Bax, which acts at the level of the mitochondria, and caspase 3, which is the major executioner protease. CaeB interferes with cell death induced by Bax expression, but not by caspase 3 expression. CaeB, thus, interacts with the apoptotic cascade between these two proteins.

GBM Annual Spring meeting Mosbach 2008, 2008
In all eukaryotic cells, origins of DNA replication are characterized by the binding of the origi... more In all eukaryotic cells, origins of DNA replication are characterized by the binding of the origin recognition complex (ORC). How ORC is positioned to sites where replication initiates is unknown, because metazoan ORC binds DNA without apparent sequence specificity. Thus, additional factors might be involved in ORC positioning. Our experiments indicate that a family member of the high-mobility group proteins, HMGA1a, can specifically target ORC to DNA. Coimmunoprecipitations and imaging studies demonstrate that HMGA1a interacts with different ORC subunits in vitro and in vivo. This interaction occurs mainly in AT-rich heterochromatic regions to which HMGA1a localizes. Fusion proteins of HMGA1a and the DNA-binding domain of the viral factor EBNA1 or the prokaryotic tetracycline repressor, TetR, can recruit ORC to cognate operator sites forming functional origins of DNA replication. When HMGA1a is targeted to plasmid DNA, the prereplicative complex is assembled during G 1 and the amount of ORC correlates with the local concentration of HMGA1a. Nascent-strand abundance assays demonstrate that DNA replication initiates at or near HMGA1a-rich sites. Our experiments indicate that chromatin proteins can target ORC to DNA, suggesting they might specify origins of DNA replication in metazoan cells.
Frontiers in Immunology, 2015

PloS one, 2014
Conditional regulation of gene expression is a powerful and indispensable method for analyzing ge... more Conditional regulation of gene expression is a powerful and indispensable method for analyzing gene function. The "Tet-On" system is a tool widely used for that purpose. Here, the transregulator rtTA mediates expression of a gene of interest after addition of the small molecule effector doxycycline. Although very effective in rapidly turning on gene expression, the system is hampered by the long half-life of doxycycline which makes shutting down gene expression rapidly very difficult to achieve. We isolated an rtTA-binding peptide by in vivo selection that acts as a doxycycline antagonist and leads to rapid and efficient shut down of rtTA-mediated reporter gene expression in a human cell line. This peptide represents the basis for novel effector molecules which complement the "Tet-system" by enabling the investigator to rapidly turn gene expression not just on at will, but now also off.

Biotechnology journal, 2015
RNA utilizes many different mechanisms to control gene expression. Among the regulatory elements ... more RNA utilizes many different mechanisms to control gene expression. Among the regulatory elements that respond to external stimuli, riboswitches are a prominent and elegant example. They consist solely of RNA and couple binding of a small molecule ligand to the so-called "aptamer domain" with a conformational change in the downstream "expression platform" which then determines system output. The modular organization of riboswitches and the relative ease with which ligand-binding RNA aptamers can be selected in vitro against almost any molecule have led to the rapid and widespread adoption of engineered riboswitches as artificial genetic control devices in biotechnology and synthetic biology over the past decade. This review highlights proof-of-principle applications to demonstrate the versatility and robustness of engineered riboswitches in regulating gene expression in pro- and eukaryotes. It then focuses on strategies and parameters to identify aptamers that can...

Nucleic acids research, 2007
Protein-protein interactions are an important element of signal transfer within and between organ... more Protein-protein interactions are an important element of signal transfer within and between organisms. They are mainly mediated by short oligopeptide motifs and represent a widely used alternative to small, organic molecules for conveying information. The transcription factor TetR, a regulator of tetracycline resistance in Gram-negative bacteria, is naturally induced by tetracycline or its derivatives. The oligopeptide Tip (Transcription inducing peptide) fused to either N- or C-terminus of Thioredoxin A (TrxA) has been isolated as an artificial inducer for TetR in Escherichia coli. This inducing property can be exploited to monitor the in vivo expression of a protein of interest by fusing Tip to its C-terminus. We improve the induction efficiency of Tip by adding an aromatic amino acid before residue 1 of Tip in C-terminal fusions to TrxA. The induction efficiency of that modified TrxA-Tip fusion is further enhanced when the effector-binding pocket of TetR is enlarged by the N82A a...

BMC biotechnology, 2007
The Tet-Off (tTA) and Tet-On (rtTA) regulatory systems are widely applied to control gene express... more The Tet-Off (tTA) and Tet-On (rtTA) regulatory systems are widely applied to control gene expression in eukaryotes. Both systems are based on the Tet repressor (TetR) from transposon Tn10, a dimeric DNA-binding protein that binds to specific operator sequences (tetO). To allow the independent regulation of multiple genes, novel Tet systems are being developed that respond to different effectors and bind to different tetO sites. To prevent heterodimerization when multiple Tet systems are expressed in the same cell, single-chain variants of the transactivators have been constructed. Unfortunately, the activity of the single-chain rtTA (sc-rtTA) is reduced when compared with the regular rtTA, which might limit its application. We recently identified amino acid substitutions in rtTA that greatly improved the transcriptional activity and doxycycline-sensitivity of the protein. To test whether we can similarly improve other TetR-based gene regulation systems, we introduced these mutations...
Journal of bacteriology, 1998
Eight Tn10 Tet repressor mutants with an induction-deficient phenotype and with primary mutations... more Eight Tn10 Tet repressor mutants with an induction-deficient phenotype and with primary mutations located at or close to the dimer interface were mutagenized and screened for inducibility in the presence of tetracycline. The second-site suppressors with wild-type-like operator binding activity that were obtained act, except for one, at a distance, suggesting that they contribute to conformational changes in the Tet repressor. Many of these long-range suppressors occur along the dimer interface, indicating that interactions between the monomers play an important role in Tet repressor induction.

Molecular Microbiology, 1995
The gene for the Tn 10 Tet repressor (TetR) was subjected to deletion mutagenesis. Screening for ... more The gene for the Tn 10 Tet repressor (TetR) was subjected to deletion mutagenesis. Screening for a transdominant operator-binding negative phenotype yielded 10 mutants with internal deletions. Three deletions extend from residue D5 to residues L41, W75, or Q76, respectively, and two contain deletions of the alpha-helix-turn-alpha-helix DNA-binding motif. Five deletions range from residue K84 to residues between R87 and K98. Since residues from the N-terminus up to position 98 are not necessary for dimerization, this must take place in the C-terminal half of the protein. Ability to dimerize was probed by introducing ochre nonsense codons (oc) at residues G138, H151, E159, I174, or K202. Koc202 shows wild-type in vivo operator-binding and inducibility by tetracycline indicating that the six C-terminal residues of TetR are not important for activity. Mutants with longer C-terminal truncations are inactive and not transdominant. They show reduced steady-state protein levels and are probably impaired in folding and degraded in vivo. Two mutants (delta151-166, delta164-166) with deletions in a region variable in primary structure and length among Tet repressors from different resistance determinants bind tet operator efficiently, but are not inducible by tetracycline. This result indicates that these residues are not important for dimer formation in the operator-binding form.

Current Opinion in Biotechnology, 2015
Synthetic biology uses our understanding of biological systems to develop innovative solutions fo... more Synthetic biology uses our understanding of biological systems to develop innovative solutions for challenges in fields as diverse as genetic control and logic devices, bioremediation, materials production or diagnostics and therapy in medicine by designing new biological components. RNA-based elements are key components of these engineered systems. Their structural and functional diversity is ideal for generating regulatory riboswitches that react with many different types of output to molecular and environmental signals. Recent advances have added new sensor and output domains to the existing toolbox, and demonstrated the portability of riboswitches to many different organisms. Improvements in riboswitch design and screens for selecting in vivo active switches provide the means to isolate riboswitches with regulatory properties more like their natural counterparts.
Nucleic Acids Research, 2004
Riboswitches are newly discovered regulatory ele- ments which control a wide set of basic metabol... more Riboswitches are newly discovered regulatory ele- ments which control a wide set of basic metabolic pathways. They consist solely of RNA, sense their ligand in a preformed binding pocket and perform a conformational switch in response to ligand binding resulting in altered gene expression. We have utilized the enormous potential of RNA for mol- ecular sensing and conformational changes to

Frontiers in immunology, 2014
Large amounts of dead and dying cells are produced during cancer therapy and allograft rejection.... more Large amounts of dead and dying cells are produced during cancer therapy and allograft rejection. Depending on the death pathway and stimuli involved, dying cells exhibit diverse features, resulting in defined physiological consequences for the host. It is not fully understood how dying and dead cells modulate the immune response of the host. To address this problem, different death stimuli were studied in B16F10 melanoma cells by regulated inducible transgene expression of the pro-apoptotic active forms of caspase-3 (revCasp-3), Bid (tBid), and the Mycobacterium tuberculosis-necrosis inducing toxin (CpnTCTD). The immune outcome elicited for each death stimulus was assessed by evaluating the allograft rejection of melanoma tumors implanted subcutaneously in BALB/c mice immunized with dying cells. Expression of all proteins efficiently killed cells in vitro (>90%) and displayed distinctive morphological and physiological features as assessed by multiparametric flow cytometry analy...

PLoS ONE, 2014
Livin is a member of the Inhibitor of Apoptosis (IAP) protein family that inhibits apoptosis trig... more Livin is a member of the Inhibitor of Apoptosis (IAP) protein family that inhibits apoptosis triggered by a variety of stimuli. We previously demonstrated that while Livin inhibits caspase activity, caspases can cleave Livin to produce a truncated protein, tLivin and that this newly formed tLivin paradoxically induces cell death. However to date, the mechanism of tLivin-induced cell death is not fully understood. In this study, we set out to characterize the form of cell death mediated by tLivin. Here we demonstrate that, unlike most death-promoting proteins, tLivin is a flexible inducer of cell death capable of promoting necrosis or apoptosis in different cell lines. The unusual flexibility of tLivin is displayed by its ability to activate an alternative form of cell death when apoptosis is inhibited. Thus, tLivin can promote more than one form of cell death in the same cell type. Interestingly, in cells where tLivin induces necrosis, deletion of the caspase binding BIR domain results in tLivin-induced apoptosis, suggesting the BIR domain can potentially hamper the ability of tLivin to induce apoptosis. We further elucidate that tLivin activates the JNK pathway and both tLivin-induced apoptosis and necrosis are partially mediated by JNK activity. Acquired resistance to apoptosis, common in many tumors, impinges on the efficiency of conventional anti-cancer agents that function primarily by inducing apoptosis. The ability of tLivin to induce death of apoptosis-compromised cells makes it an attractive candidate for targeted cancer therapy.

Clinical & Experimental Immunology, 2014
In an organism, cell death occurs at many different sites and in many different forms. It is freq... more In an organism, cell death occurs at many different sites and in many different forms. It is frequently part of normal development or serves to maintain cell homeostasis. In other cases, cell death not only occurs due to injury, disease or infection, but also as a consequence of various therapeutic interventions. However, in all of these scenarios, the immune system has to react to the dying and dead cells and decide whether to mount an immune response, to remain quiet or to initiate healing and repopulation. This is essential for the organism, testified by many diseases that are associated with malfunctioning in the cell death process, the corpse removal, or the ensuing immune responsiveness. Therefore, dying cells generally have to be considered as instructors of the immune system. How this happens and which signals and pathways contribute to modulate or shape the immune response is still elusive in many conditions. The articles presented in this Special Issue address such open questions. They highlight that the context in which cell death occurs will not only influence the cell death process itself, but also affect the surrounding cellular milieu, how the generation and presence of 'eat me' signals can have an impact on cell clearance, and that the exact nature of the residual 'debris' and how it is processed are fundamental to determining the immunological consequences. Hopefully, these articles initiate new approaches and new experiments to complete our understanding of how cell death and the immune system interact with each other.

Methods in molecular biology (Clifton, N.J.), 2013
Apoptosis and necrosis reflect the program of cell death employed by a dying cell and the final s... more Apoptosis and necrosis reflect the program of cell death employed by a dying cell and the final stage of death, respectively. Whereas apoptosis is defined as a physiological, highly organized cell death process, necrosis is commonly considered to be accidental and uncontrolled. Physiological and weak pathological death stimuli preferentially induce apoptosis, while harsh non-physiological insults often immediately instigate (primary) necrosis. If an apoptosing cell transits into a phase of plasma membrane disintegration, this stage of death is referred to as secondary or post-apoptotic necrosis.Here, we present several conditions that stimulate primary and/or secondary necrosis and show that necrosis displays considerably different time courses. For subclassification of necrotic phenotypes we employed a flow cytometric single-tube 4-color staining technique including annexin A5-FITC, propidium iodide, DiIC1(5), and Hoechst 33342.

Expert Review of Clinical Immunology, 2014
Overwhelming apoptosis combined with a deficiency in clearing apoptotic cells is thought to be an... more Overwhelming apoptosis combined with a deficiency in clearing apoptotic cells is thought to be an important etiopathogenic event in the autoimmune disease systemic lupus erythematosus (SLE). Lazy macrophages, complement or DNase I deficiency as well as insufficient natural IgM might be important factors leading to such a clearance deficiency. A defective clearance of apoptotic cells leads to the activation and maturation of plasmacytoid and myeloid dendritic cells (DCs) by material derived from secondary necrotic cells carrying modified autoantigens. This results in the presentation of autoantigens to autoreactive T and B cells in an immunogenic manner, thereby leading to autoantibody production, chronic inflammation and severe tissue damage. Since DC activation and IFN-α production by plasmacytoid dendritic cells play a critical role in the course of SLE pathogenesis, therapeutic intervention to end this vicious cycle might be a promising approach for treating the disease.

RNA, 2014
Modulation of mRNA translatability either by trans-acting factors (proteins or sRNAs) or by in ci... more Modulation of mRNA translatability either by trans-acting factors (proteins or sRNAs) or by in cis-acting riboregulators is widespread in bacteria and controls relevant phenotypic traits. Unfortunately, global identification of post-transcriptionally regulated genes is complicated by poor structural and functional conservation of regulatory elements and by the limitations of proteomic approaches in protein quantification. We devised a genetic system for the identification of post-transcriptionally regulated genes and we applied this system to search for Pseudomonas aeruginosa RNA thermometers, a class of regulatory RNA that modulates gene translation in response to temperature changes. As P. aeruginosa is able to thrive in a broad range of environmental conditions, genes differentially expressed at 37 °C versus lower temperatures may be involved in infection and survival in the human host. We prepared a plasmid vector library with translational fusions of P. aeruginosa DNA fragments (PaDNA) inserted upstream of TIP2, a short peptide able to inactivate the Tet repressor (TetR) upon expression. The library was assayed in a streptomycin-resistant merodiploid rpsL(+)/rpsL31 Escherichia coli strain in which the dominant rpsL(+) allele, which confers streptomycin sensitivity, was repressed by TetR. PaDNA fragments conferring thermosensitive streptomycin resistance (i.e., expressing PaDNA-TIP2 fusions at 37°C, but not at 28°C) were sequenced. We identified four new putative thermosensors. Two of them were validated with conventional reporter systems in E. coli and P. aeruginosa. Interestingly, one regulates the expression of ptxS, a gene implicated in P. aeruginosa pathogenesis.
Frontiers in Immunology, 2014

European Journal of Biochemistry, 2003
The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resista... more The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resistance determinants in Gram-negative bacteria. The resistance protein TetA, a membrane-spanning H+-[tc.M]+ antiporter, must be sensitively regulated because its expression is harmful in the absence of tc, yet it has to be expressed before the drugs' concentration reaches cytoplasmic levels inhibitory for protein synthesis. Consequently, TetR shows highly specific tetO binding to reduce basal expression and high affinity to tc to ensure sensitive induction. Tc can cross biological membranes by diffusion enabling this inducer to penetrate the majority of cells. These regulatory and pharmacological properties are the basis for application of TetR to selectively control the expression of single genes in lower and higher eukaryotes. TetR can be used for that purpose in some organisms without further modifications. In mammals and in a large variety of other organisms, however, eukaryotic transcriptional activator or repressor domains are fused to TetR to turn it into an efficient regulator. Mechanistic understanding and the ability to engineer and screen for mutants with specific properties allow tailoring of the DNA recognition specificity, the response to inducer tc and the dimerization specificity of TetR-based eukaryotic regulators. This review provides an overview of the TetR properties as they evolved in bacteria, the functional modifications necessary to transform it into a convenient, specific and efficient regulator for use in eukaryotes and how the interplay between structure--function studies in bacteria and specific requirements of particular applications in eukaryotes have made it a versatile and highly adaptable regulatory system.

The EMBO Journal, 2005
It is well established that gene expression in eukaryotes is controlled by sequence-dependent bin... more It is well established that gene expression in eukaryotes is controlled by sequence-dependent binding of trans-acting proteins to regulatory elements like promoters, enhancers or silencers. A less well understood level of gene regulation is governed by the various structural and functional states of chromatin, which have been ascribed to changes in covalent modification of core histone proteins. And, much on how topological domains in the genome take part in establishing and maintaining distinct gene expression patterns is still unknown. Here we present a set of regulatory proteins that allow to reversibly alter the DNA structure in vivo and in vitro by adding low molecular weight effectors that control their oligomerization and DNA binding. Using this approach, we completely regulate the activity of an SV40 enhancer in HeLa cells by reversible loop formation to topologically separate it from the promoter. This result establishes a new mechanism for DNA-structure-dependent gene regulation in vivo and provides evidence supporting the structural model of insulator function.
Uploads
Papers by Christian Berens