The aim of this study was to investigate predictors of progressive cognitive deterioration in pat... more The aim of this study was to investigate predictors of progressive cognitive deterioration in patients with suspected non-Alzheimer disease pathology (SNAP) and mild cognitive impairment (MCI). We measured markers of amyloid pathology (CSF β-amyloid 42) and neurodegeneration (hippocampal volume on MRI and cortical metabolism on [(18)F]-fluorodeoxyglucose-PET) in 201 patients with MCI clinically followed for up to 6 years to detect progressive cognitive deterioration. We categorized patients with MCI as A+/A- and N+/N- based on presence/absence of amyloid pathology and neurodegeneration. SNAPs were A-N+ cases. The proportion of progressors was 11% (8/41), 34% (14/41), 56% (19/34), and 71% (60/85) in A-N-, A+N-, SNAP, and A+N+, respectively; the proportion of APOE ε4 carriers was 29%, 70%, 31%, and 71%, respectively, with the SNAP group featuring a significantly different proportion than both A+N- and A+N+ groups (p ≤ 0.005). Hypometabolism in SNAP patients was comparable to A+N+ patients (p = 0.154), while hippocampal atrophy was more severe in SNAP patients (p = 0.002). Compared with A-N-, SNAP and A+N+ patients had significant risk of progressive cognitive deterioration (hazard ratio = 2.7 and 3.8, p = 0.016 and p < 0.001), while A+N- patients did not (hazard ratio = 1.13, p = 0.771). In A+N- and A+N+ groups, none of the biomarkers predicted time to progression. In the SNAP group, lower time to progression was correlated with greater hypometabolism (r = 0.42, p = 0.073). Our findings support the notion that patients with SNAP MCI feature a specific risk progression profile.
Objectives: The aim of this study was to investigate predictors of progressive cognitive deterior... more Objectives: The aim of this study was to investigate predictors of progressive cognitive deterioration in patients with suspected non-Alzheimer disease pathology (SNAP) and mild cognitive impairment (MCI).
Recent imaging studies have demonstrated functional brain network changes in patients with Alzhei... more Recent imaging studies have demonstrated functional brain network changes in patients with Alzheimer's disease (AD). Eigenvector centrality (EC) is a graph analytical measure that identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. This study used voxel-wise EC mapping (ECM) to analyze individual whole-brain resting-state functional magnetic resonance imaging (MRI) scans in 39 AD patients (age 67 6 8) and 43 healthy controls (age 69 6 7). Between-group differences were assessed by a permutation-based method. Associations of EC with biomarkers for AD pathology in cerebrospinal fluid (CSF) and Mini Mental State Examination (MMSE) scores were assessed using Spearman correlation analysis. Decreased EC was found bilaterally in the occipital cortex in AD patients compared to controls. Regions of increased EC were identified in the anterior cingulate and paracingulate gyrus. Across groups, frontal and occipital EC changes were associated with pathological concentrations of CSF M.A.A. Binnewijzend and S.M. Adriaanse contributed equally to this paper. in Wiley Online Library (wileyonlinelibrary.com). r Human Brain Mapping 35:2383-2393 (2014) r V C 2013 Wiley Periodicals, Inc.
The aim of this study was to investigate predictors of progressive cognitive deterioration in pat... more The aim of this study was to investigate predictors of progressive cognitive deterioration in patients with suspected non-Alzheimer disease pathology (SNAP) and mild cognitive impairment (MCI). We measured markers of amyloid pathology (CSF β-amyloid 42) and neurodegeneration (hippocampal volume on MRI and cortical metabolism on [(18)F]-fluorodeoxyglucose-PET) in 201 patients with MCI clinically followed for up to 6 years to detect progressive cognitive deterioration. We categorized patients with MCI as A+/A- and N+/N- based on presence/absence of amyloid pathology and neurodegeneration. SNAPs were A-N+ cases. The proportion of progressors was 11% (8/41), 34% (14/41), 56% (19/34), and 71% (60/85) in A-N-, A+N-, SNAP, and A+N+, respectively; the proportion of APOE ε4 carriers was 29%, 70%, 31%, and 71%, respectively, with the SNAP group featuring a significantly different proportion than both A+N- and A+N+ groups (p ≤ 0.005). Hypometabolism in SNAP patients was comparable to A+N+ patients (p = 0.154), while hippocampal atrophy was more severe in SNAP patients (p = 0.002). Compared with A-N-, SNAP and A+N+ patients had significant risk of progressive cognitive deterioration (hazard ratio = 2.7 and 3.8, p = 0.016 and p < 0.001), while A+N- patients did not (hazard ratio = 1.13, p = 0.771). In A+N- and A+N+ groups, none of the biomarkers predicted time to progression. In the SNAP group, lower time to progression was correlated with greater hypometabolism (r = 0.42, p = 0.073). Our findings support the notion that patients with SNAP MCI feature a specific risk progression profile.
Objectives: The aim of this study was to investigate predictors of progressive cognitive deterior... more Objectives: The aim of this study was to investigate predictors of progressive cognitive deterioration in patients with suspected non-Alzheimer disease pathology (SNAP) and mild cognitive impairment (MCI).
Recent imaging studies have demonstrated functional brain network changes in patients with Alzhei... more Recent imaging studies have demonstrated functional brain network changes in patients with Alzheimer's disease (AD). Eigenvector centrality (EC) is a graph analytical measure that identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. This study used voxel-wise EC mapping (ECM) to analyze individual whole-brain resting-state functional magnetic resonance imaging (MRI) scans in 39 AD patients (age 67 6 8) and 43 healthy controls (age 69 6 7). Between-group differences were assessed by a permutation-based method. Associations of EC with biomarkers for AD pathology in cerebrospinal fluid (CSF) and Mini Mental State Examination (MMSE) scores were assessed using Spearman correlation analysis. Decreased EC was found bilaterally in the occipital cortex in AD patients compared to controls. Regions of increased EC were identified in the anterior cingulate and paracingulate gyrus. Across groups, frontal and occipital EC changes were associated with pathological concentrations of CSF M.A.A. Binnewijzend and S.M. Adriaanse contributed equally to this paper. in Wiley Online Library (wileyonlinelibrary.com). r Human Brain Mapping 35:2383-2393 (2014) r V C 2013 Wiley Periodicals, Inc.
Uploads
Papers by C. Teunissen