Papers by Isabelle Benoit
Biotechnology Letters, 2015
To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable bi... more To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase activities of the best mutant were increased from 1.8 IU/ml, 0.1 IU/ml and 0.05 IU/ml to 4.8 IU/ml, 0.4 IU/ml and 0.3 IU/ml, respectively. The sugar yield of wheat straw saccharification by combining enzymes from this mutant and the Aspergillus niger genetically modified strain ΔcreA/xlnR c/araR c was improved up to 7.5 mg/ml, a 229 % increase compared to the combination of wild type strains. Mixing enzymes from T. reesei and A. niger combined with the genetic modification of transcription factors is a promising strategy to increase saccharification efficiency.
Background: Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitou... more Background: Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses.

Scientific Reports, 2015
Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant... more Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-dayold colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments.
Many regulators and pathways are involved in fungal growth on plant biomass. In this study we hav... more Many regulators and pathways are involved in fungal growth on plant biomass. In this study we have analysed regulatory and metabolic mutants of Trichoderma reesei (Hypocrea jecorina) with respect to growth on pure and complex carbon sources. Growth and enzyme production of wild-type and knock-out strains were compared on 33 different plant biomass related carbon sources, ranging from monosaccharides to crude plant biomass. This data helps to understand the biotype specificity of this fungus. Differences in growth on carbon sources suggest which metabolic pathways and regulators are important for the utilization of the different substrates. Highlights from this study will be presented.

Biotechnology for Biofuels, 2015
Plant biomass is the major substrate for the production of biofuels and biochemicals, as well as ... more Plant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators. Aspergillus species form one of the best studied fungal genera in this field, and several species are used for the production of commercial enzyme cocktails. It is often assumed that related fungi use similar enzymatic approaches to degrade plant polysaccharides. In this study we have compared the genomic content and the enzymes produced by eight Aspergilli for the degradation of plant biomass. All tested Aspergilli have a similar genomic potential to degrade plant biomass, with the exception of A. clavatus that has a strongly reduced pectinolytic ability. Despite this similar genomic potential their approaches to degrade plant biomass differ markedly in the overall activities as well as the specific enzymes they employ. While many of the genes have orthologs in (nearly) all tested species, only very few of the corresponding enzymes are produced by all species during growth on wheat bran or sugar beet pulp. In addition, significant differences were observed between the enzyme sets produced on these feedstocks, largely correlating with their polysaccharide composition. These data demonstrate that Aspergillus species and possibly also other related fungi employ significantly different approaches to degrade plant biomass. This makes sense from an ecological perspective where mixed populations of fungi together degrade plant biomass. The results of this study indicate that combining the approaches from different species could result in improved enzyme mixtures for industrial applications, in particular saccharification of plant biomass for biofuel production. Such an approach may result in a much better improvement of saccharification efficiency than adding specific enzymes to the mixture of a single fungus, which is currently the most common approach used in biotechnology.

Environmental Microbiology, 2014
Interaction between microbes affects the growth, metabolism and differentiation of members of the... more Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus.
Advances in Applied Microbiology, 2015

Advances in Applied Microbiology, 2015
Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources.... more Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.

Soil Biology, 2013
ABSTRACT The global presence, high potential for industrial applications, and medical significanc... more ABSTRACT The global presence, high potential for industrial applications, and medical significance of the ascomycete fungal genus Aspergillus have made this one of the best studied group of fungi with a scientific community that is in size second only to yeast in fungal research. Genomic resources for Aspergillus were among the first to become available in fungal research and after a period of little development have recently again been pushed to the forefront of fungal genomics. These resources have provided detailed insights into a broad range of biological aspects of the life, pathogenicity, and applications of Aspergilli, enabling researchers to move toward a systems biology approach in understanding its biology. In this chapter, we will describe the development and current status of Aspergillus genomics. In addition, we will highlight three areas of Aspergillus research, plant biomass utilization, signal transduction, and secondary metabolism, as examples of what the genomic era has brought to the field.
BMC Genomics, 2014
Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the mo... more Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide range of biochemical properties. Several Aspergilli have the ability to produce a variety of proteases, but no comprehensive comparative study has been carried out on protease productivity in this genus so far.
Martin/The Ecological Genomics of Fungi, 2013
Advances in Applied Microbiology, 2014
The ability of fungi to survive in every known biotope, both natural and man-made, relies in part... more The ability of fungi to survive in every known biotope, both natural and man-made, relies in part on their ability to use a wide range of carbon sources. Fungi degrade polymeric carbon sources present in the environment (polysaccharides, proteins, and lignins) to use the monomeric components as nutrients. However, the available carbon sources vary strongly in nature, both between biotopes and in time. The degradation of polymeric carbon sources is mediated through the production of a broad range of enzymes, the production of which is tightly controlled by a network of regulators and linked to the activation of catabolic pathways to convert the released monomers. This review summarizes the knowledge of Aspergillus regulators involved in plant biomass utilization.

BMC Genomics, 2014
Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for applicatio... more Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for application purposes is limited. This paper describes a new GDH from the fungus Pycnoporus cinnabarinus CIRM BRFM 137 that is the first reported GDH from a white-rot fungus belonging to the Basidiomycota. The enzyme was recombinantly produced in Aspergillus niger, a well-known fungal host producing an array of homologous or heterologous enzymes for industrial applications. The full-length gene that encodes GDH from P. cinnabarinus (PcGDH) consists of 2,425 bp and codes for a deduced protein of 620 amino acids with a calculated molecular mass of 62.5 kDa. The corresponding complementary DNA was cloned and placed under the control of the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. The signal peptide of the glucoamylase prepro sequence of A. niger was used to target PcGDH secretion into the culture medium, achieving a yield of 640 mg L −1 , which is tenfold higher than any other reported value. The recombinant PcGDH was purified twofold to homogeneity in a one-step procedure with a 41 % recovery using a Ni Sepharose column. The identity of the recombinant protein was further confirmed by immunodetection using western blot analysis and Nterminal sequencing. The molecular mass of the native PcGDH was 130 kDa, suggesting a homodimeric form. Optimal pH and temperature were found to be similar (5.5 and 60°C, respectively) to those determined for the previously characterized GDH, i.e., from Glomerella cingulata. However PcGDH exhibits a lower catalytic efficiency of 67 M −1 s −1 toward glucose. This substrate is by far the preferred substrate, which constitutes an advantage over other sugar oxidases in the case of blood glucose monitoring. The substrate-binding domain of PcGDH turns out to be conserved as compared to other glucose-methanol-choline (GMCs) oxidoreductases. In addition, the ability of PcGDH to reduce oxidized quinones or radical intermediates was clearly demonstrated, which raises prospects for applying this enzyme to detoxify toxic compounds formed during the degradation of lignin.

Protein Expression and Purification, 2004
The faeB gene encoding the feruloyl esterase B (FAEB) was isolated from Aspergillus niger BRFM131... more The faeB gene encoding the feruloyl esterase B (FAEB) was isolated from Aspergillus niger BRFM131 genomic DNA. The faeB gene, with additional sequence coding for a C-terminal histidine tag, was inserted into an expression vector under the control of the gpd promoter and trpC terminator and expressed in a protease deWcient A. niger strain. Homologous overproduction allows to reach an esterase activity of 18 nkat mL ¡1 against MCA as substrate. The improvement factor was 16-fold higher as compared to the production level obtained with non-transformed A. niger strain induced by sugar beet pulp. The corresponding secretion yield was estimated to be around 100 mg L ¡1 . Recombinant FAEB was puriWed 14.6-fold to homogeneity from an 8-day-old culture by a single aYnity chromatographic step with a recovery of 64%. SDS-PAGE revealed a single band with a molecular mass of 75 kDa, while under non-denatured conditions, native enzyme has a molecular mass of around 150 kDa conWrming that the recombinant FAEB is a homodimer. The recombinant and native FAEB have the same characteristics concerning temperature and pH optima, i.e., 50°C and 6, respectively. In addition, the recombinant FAEB was determined to be quite stable up to 50°C for 120 min. Kinetic constants for MCA, MpCA, and chlorogenic acid (5-O-caVeoyl quinic acid) were as follows: K m : 0.13, 0.029, and 0.16 mM and V max : 1101, 527.6, and 28.3 nkat mg ¡1 , respectively. This is the Wrst report on the homologous overproduction of feruloyl esterase B in A. niger.

Protein Expression and Purification, 2007
Hydrolysis of plant biomass is achieved by the combined action of enzymes secreted by microorgani... more Hydrolysis of plant biomass is achieved by the combined action of enzymes secreted by microorganisms and directed against the backbone and the side chains of plant cell wall polysaccharides. Among side chains degrading enzymes, the feruloyl esterase A (FAEA) specifically removes feruloyl residues. Thus, FAEA has potential applications in a wide range of industrial processes such as paper bleaching or bio-ethanol production. To gain insight into FAEA hydrolysis activity, we solved its crystal structure. In this paper, we report how the use of four consecutive factorial approaches (two incomplete factorials, one sparse matrix, and one full factorial) allowed expressing in Escherichia coli, refolding and then crystallizing Aspergillus niger FAEA in 6 weeks. Culture conditions providing the highest expression level were determined using an incomplete factorial approach made of 12 combinations of four E. coli strains, three culture media and three temperatures (full factorial: 36 combinations). Aspergillus niger FAEA was expressed in the form of inclusion bodies. These were dissolved using a chaotropic agent, and the protein was purified by affinity chromatography on Ni column under denaturing conditions. A suitable buffer for refolding the protein eluted from the Ni column was found using a second incomplete factorial approach made of 96 buffers (full factorial: 3840 combinations). After refolding, the enzyme was further purified by gel filtration, and then crystallized following a standard protocol: initial crystallization conditions were found using commercial crystallization screens based on a sparse matrix. Crystals were then optimized using a full factorial screen.
IMA Fungus, 2011
Fungi inhabit every natural and anthropogenic environment on Earth. They have highly varied life-... more Fungi inhabit every natural and anthropogenic environment on Earth. They have highly varied life-styles including saprobes (using only dead biomass as a nutrient source), pathogens (feeding on living biomass), and symbionts (co-existing with other organisms). These distinctions are not absolute as many species employ several life styles (e.g. saprobe and opportunistic pathogen, saprobe and mycorrhiza).

Fungal Genetics and Biology, 2013
Rock-inhabiting black fungi [also microcolonial or meristematic fungi (MCF)] are a phylogenetical... more Rock-inhabiting black fungi [also microcolonial or meristematic fungi (MCF)] are a phylogenetically diverse group of melanised ascomycetes with distinctive morphological features that confer extensive stress tolerance and permit survival in hostile environments. The MCF strain A95 Knufia petricola (syn. Sarcinomyces petricola) belongs to an ancestral lineage of the order Chaetothyriales (class Eurotiomycetes). K. petricola strain A95 is a rock-inhabiting MCF and its growth requirements were studied using the 96well plate-based Biolog™ System under $1070 different conditions (osmotic stress, pH growth optima, growth factor requirements and nutrient catabolism). A95 is an osmotolerant, oligotrophic MCF that grows best around pH 5. Remarkably, A95 shows metabolic activity in the absence of added nitrogen, phosphorus or sulphur. Correlations could be drawn between the known nutrient requirements of A95 and what probably is available in sub-aerial systems (rock and other material surfaces). Detailed knowledge of A95's metabolic requirements allowed formulation of a synthetic medium that supports strong fungal growth.

Fungal Genetics and Biology, 2009
The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and... more The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and compared to that of Aspergillus niger and Aspergillus oryzae using a combination of bioinformatics, physiology and transcriptomics. Manual verification indicated that 28.4% of the A. nidulans ORFs analysed in this study do not contain a secretion signal, of which 40% may be secreted through a non-classical method. While significant differences were found between the species in the numbers of ORFs assigned to the relevant CAZy families, no significant difference was observed in growth on polysaccharides. Growth differences were observed between the Aspergilli and Podospora anserina, which has a more different genomic potential for polysaccharide degradation, suggesting that large genomic differences are required to cause growth differences on polysaccharides. Differences were also detected between the Aspergilli in the presence of putative regulatory sequences in the promoters of the ORFs of this study and correlation of the presence of putative XlnR binding sites to induction by xylose was detected for A. niger. These data demonstrate differences at genome content, substrate specificity of the enzymes and gene regulation in these three Aspergilli, which likely reflect their individual adaptation to their natural biotope.
FEBS Letters, 2006
The thermal stability of four molecular forms (native, refolded, glycosylated, non-glycosylated) ... more The thermal stability of four molecular forms (native, refolded, glycosylated, non-glycosylated) of feruloyl esterase A (FAEA) was studied. From the most to the least thermo-resistant, the four molecular species ranked as follows: (i) glycosylated form produced native, (ii) non-glycosylated form produced native, (iii) non-glycosylated form produced as inclusion bodies and refolded, and (iv) glycosylated form produced native chemically denatured and then refolded. On the basis of these results and of crystal structure data, we discuss the respective importance of protein folding and glycosylation in the thermal stability of recombinant FAEA.
Uploads
Papers by Isabelle Benoit