The derivation of an International Classification of Diseases, Tenth Revision–based trauma-related mortality model using machine learning
Journal of Trauma and Acute Care Surgery, 2021
BACKGROUND Existing mortality prediction models have attempted to quantify injury burden followin... more BACKGROUND Existing mortality prediction models have attempted to quantify injury burden following trauma-related admissions with the most notable being the Injury Severity Score (ISS). Although easy to calculate, it requires additional administrative coding. International Classification of Diseases (ICD)–based models such as the Trauma Mortality Prediction Model (TMPM-ICD10) circumvent these limitations, but they use linear modeling, which may not adequately capture the intricate relationships of injuries on mortality. Using ICD-10 coding and machine learning (ML) algorithms, the present study used the National Trauma Data Bank to develop mortality prediction models whose performance was compared with logistic regression, ISS, and TMPM-ICD10. METHODS The 2015 to 2017 National Trauma Data Bank was used to identify adults following trauma-related admissions. Of 8,021 ICD-10 codes, injuries were categorized into 1,495 unique variables. The primary outcome was in-hospital mortality. eX...
Uploads
Papers by Arjun Verma