Papers by Antonio Martinez Cutillas
Cauce 2000: Revista de la ingeniería civil, 2002
Esta obra es especialmente singular por su estructura. Cuenta con un novedoso tablero en el que s... more Esta obra es especialmente singular por su estructura. Cuenta con un novedoso tablero en el que se aprecia la adptacion del concepto de celosia metalica, propia de los grandes puentes de ferrocarril, al dominio estructural y constructivo de los de hormigon pretensado. Para la ejecucion de esta infraestructura se han desarrollado medios auxiliares especificos. Se ha desplegado como dicen sus autores, todo un "know how" que ha implicado a proyectistas, constructores y, en suma, a todos los profesionales que han participado en una obra que han considerado como reto profesional y personal.
DAU: Debats d'arquitectura i urbanisme : revista de la Demarcació de Lleida del COAC, 2004
<u>IV Congreso de la Asociación Científico-Tecnica del Hormigón Estructural - Congreso Internacional de Estructuras</u>, Valencia, 24-27.11.2008, 2008
<u>IV Congreso de la Asociación Científico-Tecnica del Hormigón Estructural - Congreso Internacional de Estructuras</u>, Valencia, 24-27.11.2008, 2008
<u>IV Congreso de la Asociación Científico-Tecnica del Hormigón Estructural - Congreso Internacional de Estructuras</u>, Valencia, 24-27.11.2008, 2008

Revista de Obras Públicas: Organo profesional de los ingenieros de caminos, canales y puertos, 2015
espanolUbicado en la Linea de Alta Velocidad Madrid- Extremadura, el viaducto tiene una longitud ... more espanolUbicado en la Linea de Alta Velocidad Madrid- Extremadura, el viaducto tiene una longitud total de 1.488 m. La distribucion de luces del viaducto viene influenciada por el salto del Rio Tajo, el cual se realiza mediante un arco de 324 m de luz, fragmentandose el tablero sobre el mismo en seis vanos de 54m. Los vanos de acceso se plantean de 60 m, intercalandose entre ellos dos vanos de transicion de 57 m, uno a cada lado del arranque del arco. El elemento emblematico del viaducto es el citado arco. De directriz curva, consta de un cajon variable en canto entre 3,5 m y 4 m y en ancho entre 12 m en arranques y 6 m en clave. Con sus 324 m de luz principal, superara en mas de 60 m al puente sobre el embalse de Contreras, el mayor puente arco ferroviario de hormigon ejecutado hasta la fecha en Espana. EnglishLocated in the High-Speed Railway Line Madrid- Extremadura, the bridge has a total length of 1488m. The span distribution is influenced by the cr ossing of the Tajo River, which takes place with an ar ch, 324m long, and dividing the deck over it in six spans of 54m each one. The appr oach spans are 60m long, inserting two transition spans of 57m. The emblematic element of the bridge is aforementioned arch. With curve directrix, it is formed by a hollow variable section between (4.00 m � 3.50 m wide; 12.00 m � 6.00 m high). W ith its man span length of 324m, it will surpass the bridge over the Contreras Reservoir, currently the largest railway ar ch bridge executed in Spain.

Report, 2010
The aim of the project for adapting SP527 carriageway (Novara Province, Piemonte Region, Italy) i... more The aim of the project for adapting SP527 carriageway (Novara Province, Piemonte Region, Italy) is to improve the local roads network connection with Milan Malpensa airport; the project is going through its detailed design phase. The Ticino Natural Park is fully interested by this project so that environmental aspects have become the most important. In the current SP527, two 19 th-century infrastructures stand out: a steel lattice bridge over the Ticino river and a masonry 3-arch bridge over the Bragadano canal. A new bridge over passing the Ticino river is needed: for its architectural concept design, the presence of the old lattice bridge has been considered. This new bridge has a total length of 316,30 m with an overall deck width of 17,05m. The main deck consists of a tubular girder where lateral parts are a steel "celosía" lattice, the lower deck is a reinforced concrete lenticular section, longitudinally and transversely pre-tensioned, with height up to 1,75 m and transversal beams every 4 m.
The soil-structure interaction at bridge abutments may introduce important changes in the dynamic... more The soil-structure interaction at bridge abutments may introduce important changes in the dynamic properties of short to medium span bridges. The paper presents the results obtained, through the use of the Boundary Element Method (B.E.M.) technique in several typical situations, including semiinfinite and layered media. Both stiffness and damping properties are included. 1.
European Journal of Mechanics A-solids, 1997
Strong motion records obtained in instrumented short-span bridges show the importance of the abut... more Strong motion records obtained in instrumented short-span bridges show the importance of the abutments in the dynamic response of the structure. Existing models study the pier foundation influence but not the abutment performance. This work proposes two and three dimensional boundary element models in the frequency domain and studies the dimensionless dynamic stiffness of standard bridge abutments.
Conference on Computational Structures Technology, 1996
Strong motion obtained in instrumental short-span bridges show the importance of the abutments in... more Strong motion obtained in instrumental short-span bridges show the importance of the abutments in the dynamic response of the whole structure. Many models ha ve heen used in order to take into account the influence of pier foundations although no reliable ones have been used to analyse the abutment performance. In this work three-dimensional Boundary Element models in frecuency domain have been proposed and dimensionless dynamic stiffness of standard bridge ahutmcnts have been obtained.

espanolLa construccion del nuevo puente atirantado sobre la Bahia de Cadiz con 540 m de luz tiene... more espanolLa construccion del nuevo puente atirantado sobre la Bahia de Cadiz con 540 m de luz tiene varias particularidades que requieren un detallado analisis y calculo avanzado de las 1275 fases constructivas: tablero mixto en vez de losa metalica ortotropa, izado de dovelas de 20.0 m de longitud por 34.30 m de ancho con pesos de 400 t, voladizo de 200.0 m hasta el apoyo en la primera pila del vano lateral y la construccion por voladizos descompensados 10.0 m para minimizar los desequilibrios en la torre. Se ha hecho un calculo no lineal de todas las fases constructivas, en varias fases de progresiva exactitud. Primero se ha realizado un calculo lineal, con modulo de Ernst en los tirantes correspondiente al axil de carga permanente. Despues se ha anadido la matriz geometrica fija en la torre correspondiente a los axiles de carga permanente, un calculo no lineal iterativo con matriz geometrica en la torre con el axil exacto en cada fase y un calculo no lineal iterativo incluyendo el modulo secante de Ernst de los tirantes con el incremento de axil de cada fase. Con el cuarto nivel de calculo se han alcanzado convergencias muy buenas, descartando la necesidad de calculos adicionales donde por ejemplo se incluyan los tirantes como elementos no lineales mas complejos. Ademas, se ha realizado un exhaustivo control tensional durante todas las fases de todos los elementos del puente. Para la torre, se han establecido dos niveles de calculo. En las fases constructivas con el viento de construccion se alcanzan niveles de traccion menores que fctk, por lo que no ha sido necesaria ninguna consideracion especial. Para las hipotesis ELU con viento mayorado si ha sido necesario un calculo no lineal material y geometrico detallado, ya que la no linealidad ha llegado a incrementar un 50% los esfuerzos lineales. Respecto el tablero, la losa superior si que alcanza tracciones mayores que fctk, lo que ha obligado a considerar seccion fisurada evolutiva en determinadas fases constructivas. Asi mismo, para los efectos del viento, tanto en construccion como durante la vida del puente, se ha calculado el bataneo del tablero, los efectos de rafaga desequilibrada durante la construccion y la sensibilidad de los tirantes frente a la excitacion parametrica y vibraciones inducidas. EnglishThe construction of the new cable stayed bridge over the Cadiz bay with 540 m span presents several special features which require a detailed analysis and an advanced calculation of each of the 1275 construction stages: composite deck instead of orthotropic steel deck, erection of segments 20.0 m length and 34.30 m width with 400 t weight and cantilever of 200.0 m before reaching the first pier in the lateral span and cantilever construction with a disequilibrium of 10.0 m to minimize bending moments in the tower. Non linear calculation has been performed for all the erection stages, in several steps of better precision. First, a linear calculation with the Ernst modulus in the stays with the axial load corresponding to the permanent load. Afterwards, a linear geometric stiffness matrix in the tower with the permanent load axial forces. Then, a non linear iterative calculation with the geometric stiffness matrix with the axial load corresponding to each stage. Last, and additional non linear iterative calculation including the secant Ernst modulus with the incremental axial force in each stage. The convergence of the results with this fourth calculation level is certainly good, disregarding the use of more complex non linear elements for the stays. In addition to this, an exhaustive tensional control has been done for all the stages and all the bridge elements. For the tower, two elements have been established. For the erection stages with the construcion wind, stresses are smaller than fctk, so no special consideration has been necessary. For the ULS load cases with the factored wind, it has been necessary an iterative calculation to include material and geometric non linearities; this has increased the linear forces by 50%. For the deck, the upper slab reaches stresses bigger than fctk, so cracked cross section has been considered for determined construction stages. Besides, for the wind effects, both during construction and bridge service stages, it has been calculated torsion in the deck, the effects of the non-equilibrated wind during construction and the effect in the stays of the parametric oscillation and induced vibrations.
A simplified model is proposed to show the importance that the dynamic soil-abutment interaction ... more A simplified model is proposed to show the importance that the dynamic soil-abutment interaction can have in the global behavior of bridges submitted to seismic loading. The modification of natural frequency and damping properties is shown in graphic form for typical short span bridges of the integral deck-abutment type for longitudinal vibrations or general ones for transverse vibrations.
Hormigón y Acero, 2016
El proceso constructivo del tramo atirantado del Puente de la Constitución de 1812 sobre la Bahía... more El proceso constructivo del tramo atirantado del Puente de la Constitución de 1812 sobre la Bahía de Cádiz Construction process of the 'Constitución de 1812' cable stayed Bridge over the Cadiz Bay
DAU: Debats d'arquitectura i urbanisme : revista de la Demarcació de Lleida del COAC, 2004
A simplified analytical model of a short span bridge is proposed. The inertial interaction effect... more A simplified analytical model of a short span bridge is proposed. The inertial interaction effects of pier foundations and abutments has been included in order to evaluate the response sensitivities to different soil-structure interaction variables. The modification of natural frequency and damping properties is shown for typical short span bridges of the integral deck-abutment type for longitudinal vibrations or general bridges for the transverse ones.
Uploads
Papers by Antonio Martinez Cutillas