Papers by Anna Maria Grimaldi

Nanomaterials
Nanoparticles (NPs) are promising platforms for the development of diagnostic and therapeutic too... more Nanoparticles (NPs) are promising platforms for the development of diagnostic and therapeutic tools. One of the main hurdle to their medical application and translation into the clinic is the fact that they accumulate in the spleen and liver due to opsonization and scavenging by the mononuclear phagocyte system. The “protein corona” controls the fate of NPs in vivo and becomes the interface with cells, influencing their physiological response like cellular uptake and targeting efficiency. For these reasons, the surface properties play a pivotal role in fouling and antifouling behavior of particles. Therefore, surface engineering of the nanocarriers is an extremely important issue for the design of useful diagnostic and therapeutic systems. In recent decades, a huge number of studies have proposed and developed different strategies to improve antifouling features and produce NPs as safe and performing as possible. However, it is not always easy to compare the various approaches and u...

Frontiers in Oncology
BackgroundBreast cancer (BC) is the most common cancer in females and despite advances in treatme... more BackgroundBreast cancer (BC) is the most common cancer in females and despite advances in treatment, it represents the leading cause of cancer mortality in women worldwide. Conventional therapeutic modalities have significantly improved the management of BC patients, but subtype heterogeneity, drug resistance, and tumor relapse remain the major factors to hamper the effectiveness of therapy for BC. In this scenario, miRNA(miR)-based therapeutics offer a very attractive area of study. However, the use of miR-based therapeutics for BC treatment still represents an underdeveloped topic. Therefore, this systematic review aims at summarizing current knowledge on promising miR-based therapeutics for BC exploring original articles focusing on in vivo experiments.MethodsThe current systematic review was performed according to PRISMA guidelines. PubMed and EMBASE databases were comprehensively explored to perform the article search.ResultsTwenty-one eligible studies were included and analyze...

International Journal of Molecular Sciences
There is an unmet need for novel non-invasive prognostic molecular tumour markers for breast canc... more There is an unmet need for novel non-invasive prognostic molecular tumour markers for breast cancer (BC). Accumulating evidence shows that miR-155 plays a pivotal role in tumorigenesis. Generally, miR-155 is considered an oncogenic miRNA promoting tumour growth, angiogenesis and aggressiveness of BC. Therefore, many researchers have focused on its use as a prognostic biomarker and therapeutic target. However, its prognostic value for BC patients remains controversial. To address this issue, the present systematic review aims to summarize the available evidence and give a picture of a prognostic significance of miR-155 in BC pathology. All eligible studies were searched on PubMed and EMBASE databases through various search strategies. Starting from 289 potential eligible records, data were examined from 28 studies, comparing tissue and circulating miR-155 expression levels with clinicopathological features and survival rates in BC patients. We discuss the pitfalls and challenges that...

International Journal of Molecular Sciences
Breast cancer (BC) is a heterogeneous and complex disease as witnessed by the existence of differ... more Breast cancer (BC) is a heterogeneous and complex disease as witnessed by the existence of different subtypes and clinical characteristics that poses significant challenges in disease management. The complexity of this tumor may rely on the highly interconnected nature of the various biological processes as stated by the new paradigm of Network Medicine. We explored The Cancer Genome Atlas (TCGA)-BRCA data set, by applying the network-based algorithm named SWItch Miner, and mapping the findings on the human interactome to capture the molecular interconnections associated with the disease modules. To characterize BC phenotypes, we constructed protein–protein interaction modules based on “hub genes”, called switch genes, both common and specific to the four tumor subtypes. Transcriptomic profiles of patients were stratified according to both clinical (immunohistochemistry) and genetic (PAM50) classifications. 266 and 372 switch genes were identified from immunohistochemistry and PAM50...
The International Journal of Biological Markers
The goal of this review is to provide an overview of the studies aimed at integrating imaging par... more The goal of this review is to provide an overview of the studies aimed at integrating imaging parameters with molecular biomarkers for improving breast cancer patient’s diagnosis and prognosis. The use of diagnostic imaging to extract quantitative parameters related to the morphology, metabolism, and functionality of tumors, as well as their correlation with cancer tissue biomarkers is an emerging research topic. Thanks to the development of imaging biobanks and the technological tools required for extraction of imaging parameters including radiomic features, it is possible to integrate imaging markers with genetic data. This new field of study represents the evolution of radiology–pathology correlation from an anatomic–histologic level to a genetic level, which paves new interesting perspectives for breast cancer management.

Theranostics
Recently, rational design of a new class of contrast agents (CAs), based on biopolymers (hydrogel... more Recently, rational design of a new class of contrast agents (CAs), based on biopolymers (hydrogels), have received considerable attention in Magnetic Resonance Imaging (MRI) diagnostic field. Several strategies have been adopted to improve relaxivity without chemical modification of the commercial CAs, however, understanding the MRI enhancement mechanism remains a challenge. Methods: A multidisciplinary approach is used to highlight the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA. Changes in polymer conformation and thermodynamic interactions of CAs and polymers in aqueous solutions are detected by isothermal titration calorimetric (ITC) measurements and later, these interactions are investigated at the molecular level using NMR to better understand the involved phenomena. Water molecular dynamics of these systems is also studied using Differential Scanning Calorimetry (DSC). To observe relaxometric properties variations, we have monitored the MRI enhancement of the examined structures over all the experiments. The study of polymer-CA solutions reveals that thermodynamic interactions between biopolymers and CAs could be used to improve MRI Gd-based CA efficiency. High-Pressure Homogenization is used to obtain nanoparticles. Results: The effect of the hydration of the hydrogel structure on the relaxometric properties, called Hydrodenticity and its application to the nanomedicine field, is exploited. The explanation of this concept takes place through several key aspects underlying biopolymer-CA's interactions mediated by the water. In addition, Hydrodenticity is applied to develop Gadolinium-based polymer nanovectors with size around 200 nm with improved MRI relaxation time (10-times). Conclusions: The experimental results indicate that the entrapment of metal chelates in hydrogel nanostructures offers a versatile platform for developing different high performing CAs for disease diagnosis.

Cancers
The aim of this study was to identify new disease-related circulating miRNAs with high diagnostic... more The aim of this study was to identify new disease-related circulating miRNAs with high diagnostic accuracy for breast cancer (BC) and to correlate their deregulation with the morpho-functional characteristics of the tumour, as assessed in vivo by positron emission tomography/magnetic resonance (PET/MR) imaging. A total of 77 untreated female BC patients underwent same-day PET/MR and blood collection, and 78 healthy donors were recruited as negative controls. The expression profile of 84 human miRNAs was screened by using miRNA PCR arrays and validated by real-time PCR. The validated miRNAs were correlated with the quantitative imaging parameters extracted from the primary BC samples. Circulating miR-125b-5p and miR-143-3p were upregulated in BC plasma and able to discriminate BC patients from healthy subjects (miR-125-5p area under the receiver operating characteristic ROC curve (AUC) = 0.85 and miR-143-3p AUC = 0.80). Circulating CA15-3, a soluble form of the transmembrane glycopro...

Journal of Translational Medicine
Background: The aim of the present review is to discuss how the promising field of biobanking can... more Background: The aim of the present review is to discuss how the promising field of biobanking can support health care research strategies. As the concept has evolved over time, biobanks have grown from simple biological sample repositories to complex and dynamic units belonging to large infrastructure networks, such as the Pan-European Biobanking and Biomolecular Resources Research Infrastructure (BBMRI). Biobanks were established to support scientific knowledge. Different professional figures with varied expertise collaborate to obtain and collect biological and clinical data from human subjects. At same time biobanks preserve the human and legal rights of each person that offers biomaterial for research. Methods: A literature review was conducted in April 2019 from the online database PubMed, accessed through the Bibliosan platform. Four primary topics related to biobanking will be discussed: (i) evolution, (ii) bioethical issues, (iii) organization, and (iv) imaging. Results: Most biobanks were founded as local units to support specific research projects, so they evolved in a decentralized manner. The consequence is an urgent needing for procedure harmonization regarding sample collection, processing, and storage. Considering the involvement of biomaterials obtained from human beings, different ethical issues such as the informed consent model, sample ownership, veto rights, and biobank sustainability are debated. In the face of these methodological and ethical challenges, international organizations such as BBMRI play a key role in supporting biobanking activities. Finally, a unique development is the creation of imaging biobanks that support the translation of imaging biomarkers (identified using a radiomic approach) into clinical practice by ensuring standardization of data acquisition and analysis, accredited technical validation, and transparent sharing of biological and clinical data. Conclusion: Modern biobanks permit large-scale analysis for individuation of specific diseases biomarkers starting from biological or digital material (i.e., bioimages) with well-annotated clinical and biological data. These features are essential for improving personalized medical approaches, where effective biomarker identification is a critical step for disease diagnosis and prognosis.
Nanomedicine: Nanotechnology, Biology and Medicine

Contrast media & molecular imaging, 2018
Breast cancer is a disease affecting an increasing number of women worldwide. Several efforts hav... more Breast cancer is a disease affecting an increasing number of women worldwide. Several efforts have been made in the last years to identify imaging biomarker and to develop noninvasive diagnostic tools for breast tumor characterization and monitoring, which could help in patients' stratification, outcome prediction, and treatment personalization. In particular, radiomic approaches have paved the way to the study of the cancer imaging phenotypes. In this work, a group of 49 patients with diagnosis of invasive ductal carcinoma was studied. The purpose of this study was to select radiomic features extracted from a DCE-MRI pharmacokinetic protocol, including quantitative maps of , , , iAUC, and and to construct predictive models for the discrimination of molecular receptor status (ER+/ER-, PR+/PR-, and HER2+/HER2-), triple negative (TN)/non-triple negative (NTN), ki67 levels, and tumor grade. A total of 163 features were obtained and, after feature set reduction step, followed by fea...

European journal of nuclear medicine and molecular imaging, Jan 25, 2018
The aim of this study was to determine if functional parameters extracted from the hybrid positro... more The aim of this study was to determine if functional parameters extracted from the hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) correlate with the immunohistochemical markers of breast cancer (BC) lesions, to assess their ability to predict BC subtype. This prospective study was approved by the institution's Ethics Committee, and all patients provided written informed consent. A total of 50 BC patients at diagnosis underwent PET/MRI before pharmacological and surgical treatment. For each primary lesion, the following data were extracted: morphological data including tumour-node-metastasis stage and lesion size; apparent diffusion coefficient (ADC); perfusion data including forward volume transfer constant (Ktrans), reverse efflux volume transfer constant (Kep) and extravascular extracellular space volume (Ve); and metabolic data including standardized uptake value (SUV), lean body mass (SUL), metabolic tumour volume and total lesion glycolysis. Immuno...

Nanomedicine : nanotechnology, biology, and medicine, Jan 22, 2017
Nanoparticles (NPs) are a promising tool for in vivo multimodality imaging and theranostic applic... more Nanoparticles (NPs) are a promising tool for in vivo multimodality imaging and theranostic applications. Hyaluronic acid (HA)-based NPs have numerous active groups that make them ideal as tumor-targeted carriers. The B-lymphoma neoplastic cells express on their surfaces a clone-specific immunoglobulin receptor (Ig-BCR). The peptide A20-36 (pA20-36) selectively binds to the Ig-BCR of A20 lymphoma cells. In this work, we demonstrated the ability of core-shell chitosan-HA-NPs decorated with pA20-36 to specifically target A20 cells and reduce the tumor burden in a murine xenograft model. We monitored tumor growth using high-frequency ultrasonography and demonstrated targeting specificity and kinetics of the NPs via in vivo fluorescent reflectance imaging. This result was also confirmed by ex vivo magnetic resonance imaging and confocal microscopy. In conclusion, we demonstrated the ability of NPs loaded with fluorescent and paramagnetic tracers to act as multimodal imaging contrast agen...

Nanomedicine
Although recent successes in clinical trials are strengthening research focused on cancer immunol... more Although recent successes in clinical trials are strengthening research focused on cancer immunology, the poor immunogenicity and off-target side effects of immunotherapeutics remain major challenges in translating these promising approaches to clinically feasible therapies in the treatment of a large range of tumors. Nanotechnology offers target-based approaches, which have shown significant improvements in the rapidly advancing field of cancer immunotherapy. Here, we first discuss the chemical and physical features of nanoparticulate systems that can be tuned to address the anticancer immune response, and then review recent, key examples of the exploited strategies, ranging from nanovaccines to NPs revising the tumor immunosuppressive microenvironment, up to immunotherapeutic multimodal NPs. Finally, the paper concludes by identifying the promising and outstanding challenges the field of emerging nanotechnologies is facing for cancer immunotherapy.

Nanomedicine (London, England), Jan 17, 2017
A high versatile microfluidic platform is proposed to design, in a one-step strategy, PEGylated c... more A high versatile microfluidic platform is proposed to design, in a one-step strategy, PEGylated crosslinked hyaluronic acid nanoparticles (cHANPs) entrapping a magnetic resonance imaging contrast agent and a dye for multimodal imaging applications. Clinically relevant biomaterials were shaped in the form of spherical NPs through a microfluidic flow focusing approach. A comparison between post processing and simultaneous PEGylation is reported to evaluate the potentiality of the chemical decoration of the cHANPs in microfluidics. An accurate control of the NPs in terms of size, PEGylation and loading was obtained. Furthermore, in vitro cell viability is reported and their ability to boost the magnetic resonance imaging signal is also confirmed. The proposed microfluidic approach reveals its ability to overcome several limitations of the traditional processes and to become an easy-to-use platform for theranostic applications.

International journal of molecular sciences, Jan 12, 2017
In the last few years, biomedical research has been boosted by the technological development of a... more In the last few years, biomedical research has been boosted by the technological development of analytical instrumentation generating a large volume of data. Such information has increased in complexity from basic (i.e., blood samples) to extensive sets encompassing many aspects of a subject phenotype, and now rapidly extending into genetic and, more recently, radiomic information. Radiogenomics integrates both aspects, investigating the relationship between imaging features and gene expression. From a methodological point of view, radiogenomics takes advantage of non-conventional data analysis techniques that reveal meaningful information for decision-support in cancer diagnosis and treatment. This survey is aimed to review the state-of-the-art techniques employed in radiomics and genomics with special focus on analysis methods based on molecular and multimodal probes. The impact of single and combined techniques will be discussed in light of their suitability in correlation and pr...
Journal of Experimental Marine Biology and Ecology, 2013
BMC Neuroscience, 2010
Figure 1 Octopus subesophageal mass (SUB) and optic lobe (OL) imaged with the KESM (a-d), and tra... more Figure 1 Octopus subesophageal mass (SUB) and optic lobe (OL) imaged with the KESM (a-d), and tracing results (e). Scale (block width): (a) 1.44 mm, (b) 0.72 mm, (c) 1.44 mm, (d-f) 76.8 μm. Voxel resolution: 0.6 μm x 0.7 μm x 1.0 μm. (3D rendering done with MeVisLab.) Choe et al. BMC Neuroscience 2010, 11(Suppl 1):P136
Brain Research, 2007
Ultrasound imaging was applied, for the first time, in the examination of the central nervous sys... more Ultrasound imaging was applied, for the first time, in the examination of the central nervous system of the cephalopod mollusc Octopus vulgaris, an invertebrate. Goals of this study were:
Uploads
Papers by Anna Maria Grimaldi