Syncytiotrophoblast extracellular vesicles (STBEVs) are placenta derived particles that are relea... more Syncytiotrophoblast extracellular vesicles (STBEVs) are placenta derived particles that are released into the maternal circulation during pregnancy. Abnormal levels of STBEVs have been proposed to affect maternal vascular function. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a multi-ligand scavenger receptor. Increased LOX-1 expression and activation has been proposed to contribute to endothelial dysfunction. As LOX-1 has various ligands, we hypothesized that, being essentially packages of lipoproteins, STBEVs are able to activate the LOX-1 receptor thereby impairing vascular function via the production of superoxide and decreased nitric oxide bioavailability. Uterine arteries were obtained in late gestation from Sprague-Dawley rats and incubated for 24h with or without human STBEVs (derived from a normal pregnant placenta) in the absence or presence of a LOX-1 blocking antibody. Vascular function was assessed using wire myography. Endothelium-dependent ma...
Mutations in the SLC4A11 gene, which encodes a plasma membrane borate transporter, cause recessiv... more Mutations in the SLC4A11 gene, which encodes a plasma membrane borate transporter, cause recessive congenital hereditary endothelial corneal dystrophy type 2 (CHED2), corneal dystrophy and perceptive deafness (Harboyan syndrome), and dominant late-onset Fuchs endothelial corneal dystrophy (FECD). We analyzed missense SLC4A11 mutations identified in FECD and CHED2 patients and expressed in transfected HEK 293 cells. Chemical cross-linking and migration in nondenaturing gels showed that SLC4A11 exists as a dimer. Furthermore, co-immunoprecipitation of epitopetagged proteins revealed heteromeric interactions between wild-type (WT) and mutant SLC4A11 proteins. When expressed alone, FECD-and CHED2-causing mutant SLC4A11 proteins are primarily retained intracellularly. Co-expression with WT SLC4A11 partially rescued the cell surface trafficking of CHED2 mutants, but not FECD mutants. CHED2 alleles of SLC4A11 did not affect cell surface processing of WT SLC4A11. In contrast, FECD mutants reduced WT cell surface processing efficiency, consistent with dominant inheritance of FECD. The reduction in movement of WT protein to the cell surface caused by FECD SLC4A11 helps to explain the dominant inheritance of this disorder. Similarly, the failure of CHED2 mutant SLC4A11 to affect the processing of WT protein, explains the lack of symptoms found in CHED2 carriers and the recessive inheritance of the disorder.
Mutations in the SLC4A11 protein, reported as a sodium-coupled borate transporter of the human pl... more Mutations in the SLC4A11 protein, reported as a sodium-coupled borate transporter of the human plasma membrane, are responsible for three corneal dystrophies (CD): congenital hereditary endothelial dystrophy type 2, Harboyan syndrome, and late-onset Fuch's CD. To develop a rational basis to understand these diseases, whose point mutations are found throughout the SLC4A11 sequence, we analyzed the protein biochemically. Hydropathy analysis and an existing topology model for SLC4A1 (AE1), a bicarbonate transporter with the lowest evolutionary sequence divergence from SLC4A11, formed the basis to propose an SLC4A11 topology model. Immunofluorescence studies revealed the cytosolic orientation of N-and C-termini of SLC4A11. Limited trypsinolysis of SLC4A11 partially mapped the folding of the membrane and cytoplasmic domains of the protein. The binding of SLC4A11 to a stilbenedisulfonate inhibitor resin (SITS-Affi-Gel) was prevented by preincubation with H 2 DIDS, with a significantly higher half-maximal effective concentration than AE1. We conclude that stilbenedisulfonates interact with SLC4A11 but with a lower affinity than other SLC4 proteins. Disease-causing mutants divided into two classes on the basis of the half-maximal [H 2 DIDS] required for resin displacement and the fraction of protein binding H 2 DIDS, likely representing mildly misfolded and grossly misfolded proteins. Disease-causing SLC4A11 mutants are retained in the endoplasmic reticulum of HEK 293 cells. This phenotype could be partially rescued in some cases by growing the cells at 30°C.
Anion exchanger 1 (AE1; SLC4A1), the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes, i... more Anion exchanger 1 (AE1; SLC4A1), the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes, is also expressed in heart. The aim of this study was to assess the role of AE1 in heart function through study of AE1-null (AE1(-/-)) mice, which manifest severe hemolytic anemia resulting from erythrocyte fragility. Heart weight-to-body weight ratios were significantly higher in the AE1(-/-) mice than in wild-type (AE1(+/+)) littermates at both 1-3 days postnatal (3.01 +/- 0.38 vs. 1.45 +/- 0.04) and at 7 days postnatal (9.45 +/- 0.53 vs. 4.13 +/- 0.41), indicating that loss of AE1 led to cardiac hypertrophy. Heterozygous (AE1(+/-)) mice had no signs of cardiac hypertrophy. Morphology of the adult AE1(-/-) mutant heart revealed an increased left ventricular mass, accompanied by increased collagen deposition and fibrosis. M-mode echocardiography revealed dysfunction of the AE1(-/-) hearts, including dilated left ventricle end diastole and systole and expanded left ventricular mass compared with AE1(+/+) hearts. Expression of intracellular pH-regulatory mechanisms in the hypertrophic myocardium of neonate AE1(-/-) mutant mice was indistinguishable from AE1(+/-) and AE1(+/+) mice, as assessed by quantitative real-time RT-PCR. Confocal immunofluorescence revealed that, in normal mouse myocardium, AE1 is sarcolemmal, whereas AE3 and slc26a6 are found both at the sarcolemma and in internal membranes (T tubules and sarcoplasmic reticulum). These results indicate that AE1(-/-) mice, which suffer from severe hemolytic anemia and spherocytosis, display cardiac hypertrophy and impaired cardiac function, reminiscent of findings in patients with hereditary abnormalities of red blood cells. No essential role for AE1 in heart function was found.
Mutations in the SLC4A11 gene, which encodes a plasma membrane borate transporter, cause recessiv... more Mutations in the SLC4A11 gene, which encodes a plasma membrane borate transporter, cause recessive congenital hereditary endothelial corneal dystrophy type 2 (CHED2), corneal dystrophy and perceptive deafness (Harboyan syndrome), and dominant late-onset Fuchs endothelial corneal dystrophy (FECD). We analyzed missense SLC4A11 mutations identified in FECD and CHED2 patients and expressed in transfected HEK 293 cells. Chemical cross-linking and migration in nondenaturing gels showed that SLC4A11 exists as a dimer. Furthermore, co-immunoprecipitation of epitope-tagged proteins revealed heteromeric interactions between wild-type (WT) and mutant SLC4A11 proteins. When expressed alone, FECD- and CHED2-causing mutant SLC4A11 proteins are primarily retained intracellularly. Co-expression with WT SLC4A11 partially rescued the cell surface trafficking of CHED2 mutants, but not FECD mutants. CHED2 alleles of SLC4A11 did not affect cell surface processing of WT SLC4A11. In contrast, FECD mutants...
American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2015
Intrauterine growth restriction (IUGR) has been associated with increased susceptibility 43 to my... more Intrauterine growth restriction (IUGR) has been associated with increased susceptibility 43 to myocardial ischemia/reperfusion injury (I/R). Exercise is an effective preventive 44 intervention for cardiovascular diseases; however, it may be detrimental in conditions of 45 compromised health. The aim of this study was to determine whether exercise training 46
American journal of physiology. Regulatory, integrative and comparative physiology, 2015
Preeclampsia is a disorder of pregnancy with a significant impact on maternal and fetal health. T... more Preeclampsia is a disorder of pregnancy with a significant impact on maternal and fetal health. The complexity of this multifactorial condition has precluded development of effective therapies and, although many potential pathways have been investigated, the etiology still requires clarification. Our group has investigated the scavenger lectin-like oxidized LDL (LOX-1) receptor, which may respond to factors released from the distressed placenta that contribute to the vascular pathologies observed in preeclampsia. Given the known beneficial effects of sodium tanshinone IIA sulfonate (STS; a component of Salvia miltiorrhiza) on vasodilation, reduction of oxidative stress, and lipid profiles, we have investigated its role as a potential treatment strategy. We hypothesized that STS would improve vascular endothelial function and, combined with a reduction in oxidative stress, would improve pregnancy outcomes in a rat model of preeclampsia (reduced uteroplacental perfusion pressure, RUPP...
To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina... more To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina and retinal pigment epithelial tissues were collected from canine subjects at the age of 3 weeks. Total RNA isolated from these tissues was reverse transcribed to make representative cDNA pools that were compared for differences in gene expression by using a subtractive hybridization technique referred to as representational difference analysis (RDA). Expression differences identified by RDA were confirmed and quantified by real-time reverse-transcription PCR. Mitochondrial morphology from leukocytes and skeletal muscle of normal and affected miniature Schnauzers was examined by transmission electron microscopy. RDA screening of retinal pigment epithelial cDNA identified differences in mRNA transcript coding for two mitochondrial (mt) proteins--cytochrome oxidase subunit 1 and NADH dehydrogenase subunit 6--in affected dogs. Contrary to expectations, these identified sequences did not co...
Background: Cardiac hypertrophy is central to the etiology of heart failure. Understanding the mo... more Background: Cardiac hypertrophy is central to the etiology of heart failure. Understanding the molecular pathways promoting cardiac hypertrophy may identify new targets for therapeutic intervention. Sodium-proton exchanger (NHE1) activity and expression levels in the heart are elevated in many models of hypertrophy through protein kinase C (PKC)/MAPK/ERK/p90 RSK pathway stimulation. Sustained NHE1 activity, however, requires an acid-loading pathway. Evidence suggests that the Cl − /HCO 3 − exchanger, AE3, provides this acid load. Here we explored the role of AE3 in the hypertrophic growth cascade of cardiomyocytes. Methods: AE3-deficient (ae3 −/− ) mice were compared to wildtype (WT) littermates to examine the role of AE3 protein in the development of cardiomyocyte hypertrophy. Mouse hearts were assessed by echocardiography. As well, responses of cultured cardiomyocytes to hypertrophic stimuli were measured. pH regulation capacity of ae3 −/− and WT cardiomyocytes was assessed in cultured cells loaded with the pH-sensitive dye, BCECF-AM.
World Journal of Microbiology and Biotechnology, 2005
... Dr M. Chirino-Trejo (Veterinary Microbiology, University of Saskatchewan). Mycobacterium aviu... more ... Dr M. Chirino-Trejo (Veterinary Microbiology, University of Saskatchewan). Mycobacterium avium and Mycobacterium bovis were obtained from C. Turenne (National Reference Centre for Mycobacteriology). Cryptosporidium parvum was obtained from Dr Brent Dixon (Bureau ...
Bicarbonate facilitate more than 50% of pH recovery in the acidotic myocardium, and have roles in... more Bicarbonate facilitate more than 50% of pH recovery in the acidotic myocardium, and have roles in cardiac hypertrophy and steady-state pH regulation. To determine which bicarbonate transporters are responsible for this activity, we measured the expression levels of all known HCO3 − -anion exchange proteins in mouse heart, by quantitative real time RT-PCR. Bicarbonate-anion exchangers are members of either the SLC4A or the SLC26A gene families. In neonatal and adult myocardium, AE1 (Slc4a1), AE2 (Slc4a2), AE3 (Slc4a3) (AE3fl and AE3c variants), Slc26a3 and Slc26a6 were expressed. Adult hearts expressed Slc26a3 and Slc4a1-3 mRNAs at similar levels, while Slc26a6 mRNA was about seven-fold higher than AE3, which was more abundant than any other. Immunohistochemistry revealed that Slc26a6 and AE3 are present in the plasma membrane of ventricular myocytes. Slc26a6 expression levels were higher in ventricle than atrium, whereas AE3 was detected only in ventricle. Cl − -HCO 3 − and Cl − -OH − exchange activity of SLC26A6 and AE3 were investigated in transfected HEK293 cells, using intracellular fluorescence measurements of 2 ,7 -bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF), to monitor intracellular pH (pH i ). Rates of pH i change were measured under HCO3 − -containing (Cl − -HCO 3 − ) or nominally HCO3 − -free (Cl − -OH − ) conditions. HCO3 − fluxes were similar for cells expressing AE3fl, SLC26A6 or Slc26a3, suggesting that they have similar transport activity. However, only SLC26A6 and Slc26a3 functioned as Cl − -OH − exchangers. Activation of α-adrenergic receptors, which stimulates protein kinase C, inhibited SLC26A6 Cl − -HCO 3 − exchange activity. We conclude that Slc26a6 is the predominant Cl − -HCO 3 − and Cl − -OH − exchanger of the myocardium and that Slc26a6 is negatively regulated upon α-adrenergic stimulation.
Prenatal hypoxia can alter the growth trajectory of the fetus and cause lasting health complicati... more Prenatal hypoxia can alter the growth trajectory of the fetus and cause lasting health complications including vascular dysfunction. We hypothesized that offspring that were intrauterine growth restricted (IUGR) because of prenatal hypoxia would exhibit altered vascular endothelin-1 (ET-1) signaling in later life. Isolated mesenteric artery responses to big ET-1 (bET-1) and ET-1 were assessed by using wire myography. Male IUGR offspring had 3-fold greater bET-1-induced vasoconstriction compared with controls (n=7 per group; P<0.001); NO synthase inhibition with L-N(G)-nitro-arginine-methyl ester potentiated bET-1-induced vasoconstriction, albeit this effect was 2-fold greater (P<0.05) in male control compared with IUGR offspring. Vascular responses to bET-1 were similar between female IUGR and control offspring (n=9-11 per group). In the presence of L-N(G)-nitro-arginine-methyl ester, pretreatment with the chymase inhibitor chymostatin, the gelatinase inhibitor GM6001, or the neutral endopeptidase inhibitor thiorphan did not alter responses to bET-1; however, the ET-converting enzyme inhibitor CGS35066 almost completely abolished vascular responses to bET-1 in control and IUGR groups. Systolic blood pressure in IUGR male offspring was more responsive to ET-1 antagonism in vivo compared with controls (-9 versus -4 mm Hg; n=5 per group; P=0.02); no such differences were observed in female offspring (n=5-6 per group). These results demonstrate that vascular ET-1 function is programmed by prenatal hypoxia and provide further insights into the sex differences in the long-term vascular effects of developmental stressors.
Canadian Journal of Physiology and Pharmacology, 2012
Pathological cardiac hypertrophy, the maladaptive remodelling of the myocardium, often progresses... more Pathological cardiac hypertrophy, the maladaptive remodelling of the myocardium, often progresses to heart failure. The sodium-proton exchanger (NHE1) and chloride-bicarbonate exchanger (AE3) have been implicated as important in the hypertrophic cascade. Carbonic anhydrase II (CAII) provides substrates for these transporters (protons and bicarbonate, respectively). CAII physically interacts with NHE1 and AE3, enhancing their respective ion transport activities by increasing the concentration of substrate at their transport sites. Earlier studies found that a broad-spectrum carbonic anhydrase inhibitor prevented cardiomyocyte hypertrophy (CH), suggesting that carbonic anhydrase is important in the development of hypertrophy. Here we investigated whether cytosolic CAII was the CA isoform involved in hypertrophy. Neonatal rat ventricular myocytes (NRVMs) were transduced with recombinant adenoviral constructs to over-express wildtype or catalytically inactive CAII (CAII-V143Y). Over-expression of wild-type CAII in NRVMs did not affect CH development. In contrast, CAII-V143Y over-expression suppressed the response to hypertrophic stimuli, suggesting that CAII-V143Y behaves in a dominant negative fashion over endogenous CAII to suppress hypertrophy. We also examined CAII-deficient (Car2) mice, whose hearts exhibit physiological hypertrophy without any decrease in cardiac function. Moreover, cardiomyocytes from Car2 mice do not respond to prohypertrophic stimulation. Together, these findings support a role of CAII in promoting CH.
Background: Carbonic anhydrase enzymes (CA) catalyze the reversible hydration of carbon dioxide t... more Background: Carbonic anhydrase enzymes (CA) catalyze the reversible hydration of carbon dioxide to bicarbonate 8 in mammalian cells. Trans-membrane transport of CA-produced bicarbonate contributes significantly to cellular pH 9 regulation. A body of evidence implicates pH-regulatory processes in the hypertrophic growth pathway 10 characteristic of hearts as they fail. In particular, Na + /H + exchange (NHE) activation is pro-hypertrophic and CA 11 activity activates NHE. Recently Cardrase (6-ethoxyzolamide), a CA inhibitor, was found to prevent and revert 12 agonist-stimulated cardiac hypertrophy (CH) in cultured cardiomyocytes. Our goal thus was to determine whether 13 hypertrophied human hearts have altered expression of CA isoforms. 14 Methods: We measured CA expression in hypertrophied human hearts to begin to examine the role of carbonic 15 anhydrase in progression of human heart failure. Ventricular biopsies were obtained from patients undergoing 16 cardiac surgery (CS, n = 14), or heart transplantation (HT, n = 13). CS patients presented mild/moderate concentric 17 left ventricular hypertrophy and normal right ventricles, with preserved ventricular function; ejection fractions 18 were~60%. Conversely, HT patients with failing hearts presented CH or ventricular dilation accompanied by 19 ventricular dysfunction and EF values of 20%. Non-hypertrophic, non-dilated ventricular samples served as controls. 20 Results: Expression of atrial and brain natriuretic peptide (ANP and BNP) were markers of CH. Hypertrophic 21 ventricles presented increased expression of CAII, CAIV, ANP, and BNP, mRNA levels, which increased in failing 22 hearts, measured by quantitative real-time PCR. CAII, CAIV, and ANP protein expression also increased approximately 23 two-fold in hypertrophic/dilated ventricles. 24
Mutations in the SLC4A11 protein, reported as a sodium-coupled borate transporter of the human pl... more Mutations in the SLC4A11 protein, reported as a sodium-coupled borate transporter of the human plasma membrane, are responsible for three corneal dystrophies (CD): congenital hereditary endothelial dystrophy type 2, Harboyan syndrome, and late-onset Fuch's CD. To develop a rational basis to understand these diseases, whose point mutations are found throughout the SLC4A11 sequence, we analyzed the protein biochemically. Hydropathy analysis and an existing topology model for SLC4A1 (AE1), a bicarbonate transporter with the lowest evolutionary sequence divergence from SLC4A11, formed the basis to propose an SLC4A11 topology model. Immunofluorescence studies revealed the cytosolic orientation of N-and C-termini of SLC4A11. Limited trypsinolysis of SLC4A11 partially mapped the folding of the membrane and cytoplasmic domains of the protein. The binding of SLC4A11 to a stilbenedisulfonate inhibitor resin (SITS-Affi-Gel) was prevented by preincubation with H 2 DIDS, with a significantly higher half-maximal effective concentration than AE1. We conclude that stilbenedisulfonates interact with SLC4A11 but with a lower affinity than other SLC4 proteins. Disease-causing mutants divided into two classes on the basis of the half-maximal [H 2 DIDS] required for resin displacement and the fraction of protein binding H 2 DIDS, likely representing mildly misfolded and grossly misfolded proteins. Disease-causing SLC4A11 mutants are retained in the endoplasmic reticulum of HEK 293 cells. This phenotype could be partially rescued in some cases by growing the cells at 30°C.
Introduction: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major endothel... more Introduction: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major endothelial receptor for oxidized low-density lipoprotein, is also involved in leukocyte recruitment. Systemic leukocyte activation in sepsis represents a crucial factor in the impairment of the microcirculation of different tissues, causing multiple organ failure and subsequently death. The aim of our experimental study was to evaluate the effects of LOX-1 inhibition on the endotoxin-induced leukocyte adherence and capillary perfusion within the intestinal microcirculation by using intravital microscopy (IVM). Methods: We used 40 male Lewis rats for the experiments. Ten placebo-treated animals served as a control. Thirty animals received 5 mg/kg lipopolysaccharide (LPS) intravenously. Ten endotoxemic rats remained untreated. In 10 LPS animals, we administered additionally 10 mg/kg LOX-1 antibodies. Ten further LPS animals received a nonspecific immunoglobulin (rat IgG) intravenously. After 2 hours of observation, intestinal microcirculation was evaluated by using IVM; the plasma levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) were determined; and LOX-1 expression was quantified in intestinal tissue with Western blot and reverse-transcription polymerase chain reaction (PCR).
Syncytiotrophoblast extracellular vesicles (STBEVs) are placenta derived particles that are relea... more Syncytiotrophoblast extracellular vesicles (STBEVs) are placenta derived particles that are released into the maternal circulation during pregnancy. Abnormal levels of STBEVs have been proposed to affect maternal vascular function. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a multi-ligand scavenger receptor. Increased LOX-1 expression and activation has been proposed to contribute to endothelial dysfunction. As LOX-1 has various ligands, we hypothesized that, being essentially packages of lipoproteins, STBEVs are able to activate the LOX-1 receptor thereby impairing vascular function via the production of superoxide and decreased nitric oxide bioavailability. Uterine arteries were obtained in late gestation from Sprague-Dawley rats and incubated for 24h with or without human STBEVs (derived from a normal pregnant placenta) in the absence or presence of a LOX-1 blocking antibody. Vascular function was assessed using wire myography. Endothelium-dependent ma...
Mutations in the SLC4A11 gene, which encodes a plasma membrane borate transporter, cause recessiv... more Mutations in the SLC4A11 gene, which encodes a plasma membrane borate transporter, cause recessive congenital hereditary endothelial corneal dystrophy type 2 (CHED2), corneal dystrophy and perceptive deafness (Harboyan syndrome), and dominant late-onset Fuchs endothelial corneal dystrophy (FECD). We analyzed missense SLC4A11 mutations identified in FECD and CHED2 patients and expressed in transfected HEK 293 cells. Chemical cross-linking and migration in nondenaturing gels showed that SLC4A11 exists as a dimer. Furthermore, co-immunoprecipitation of epitopetagged proteins revealed heteromeric interactions between wild-type (WT) and mutant SLC4A11 proteins. When expressed alone, FECD-and CHED2-causing mutant SLC4A11 proteins are primarily retained intracellularly. Co-expression with WT SLC4A11 partially rescued the cell surface trafficking of CHED2 mutants, but not FECD mutants. CHED2 alleles of SLC4A11 did not affect cell surface processing of WT SLC4A11. In contrast, FECD mutants reduced WT cell surface processing efficiency, consistent with dominant inheritance of FECD. The reduction in movement of WT protein to the cell surface caused by FECD SLC4A11 helps to explain the dominant inheritance of this disorder. Similarly, the failure of CHED2 mutant SLC4A11 to affect the processing of WT protein, explains the lack of symptoms found in CHED2 carriers and the recessive inheritance of the disorder.
Mutations in the SLC4A11 protein, reported as a sodium-coupled borate transporter of the human pl... more Mutations in the SLC4A11 protein, reported as a sodium-coupled borate transporter of the human plasma membrane, are responsible for three corneal dystrophies (CD): congenital hereditary endothelial dystrophy type 2, Harboyan syndrome, and late-onset Fuch's CD. To develop a rational basis to understand these diseases, whose point mutations are found throughout the SLC4A11 sequence, we analyzed the protein biochemically. Hydropathy analysis and an existing topology model for SLC4A1 (AE1), a bicarbonate transporter with the lowest evolutionary sequence divergence from SLC4A11, formed the basis to propose an SLC4A11 topology model. Immunofluorescence studies revealed the cytosolic orientation of N-and C-termini of SLC4A11. Limited trypsinolysis of SLC4A11 partially mapped the folding of the membrane and cytoplasmic domains of the protein. The binding of SLC4A11 to a stilbenedisulfonate inhibitor resin (SITS-Affi-Gel) was prevented by preincubation with H 2 DIDS, with a significantly higher half-maximal effective concentration than AE1. We conclude that stilbenedisulfonates interact with SLC4A11 but with a lower affinity than other SLC4 proteins. Disease-causing mutants divided into two classes on the basis of the half-maximal [H 2 DIDS] required for resin displacement and the fraction of protein binding H 2 DIDS, likely representing mildly misfolded and grossly misfolded proteins. Disease-causing SLC4A11 mutants are retained in the endoplasmic reticulum of HEK 293 cells. This phenotype could be partially rescued in some cases by growing the cells at 30°C.
Anion exchanger 1 (AE1; SLC4A1), the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes, i... more Anion exchanger 1 (AE1; SLC4A1), the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes, is also expressed in heart. The aim of this study was to assess the role of AE1 in heart function through study of AE1-null (AE1(-/-)) mice, which manifest severe hemolytic anemia resulting from erythrocyte fragility. Heart weight-to-body weight ratios were significantly higher in the AE1(-/-) mice than in wild-type (AE1(+/+)) littermates at both 1-3 days postnatal (3.01 +/- 0.38 vs. 1.45 +/- 0.04) and at 7 days postnatal (9.45 +/- 0.53 vs. 4.13 +/- 0.41), indicating that loss of AE1 led to cardiac hypertrophy. Heterozygous (AE1(+/-)) mice had no signs of cardiac hypertrophy. Morphology of the adult AE1(-/-) mutant heart revealed an increased left ventricular mass, accompanied by increased collagen deposition and fibrosis. M-mode echocardiography revealed dysfunction of the AE1(-/-) hearts, including dilated left ventricle end diastole and systole and expanded left ventricular mass compared with AE1(+/+) hearts. Expression of intracellular pH-regulatory mechanisms in the hypertrophic myocardium of neonate AE1(-/-) mutant mice was indistinguishable from AE1(+/-) and AE1(+/+) mice, as assessed by quantitative real-time RT-PCR. Confocal immunofluorescence revealed that, in normal mouse myocardium, AE1 is sarcolemmal, whereas AE3 and slc26a6 are found both at the sarcolemma and in internal membranes (T tubules and sarcoplasmic reticulum). These results indicate that AE1(-/-) mice, which suffer from severe hemolytic anemia and spherocytosis, display cardiac hypertrophy and impaired cardiac function, reminiscent of findings in patients with hereditary abnormalities of red blood cells. No essential role for AE1 in heart function was found.
Mutations in the SLC4A11 gene, which encodes a plasma membrane borate transporter, cause recessiv... more Mutations in the SLC4A11 gene, which encodes a plasma membrane borate transporter, cause recessive congenital hereditary endothelial corneal dystrophy type 2 (CHED2), corneal dystrophy and perceptive deafness (Harboyan syndrome), and dominant late-onset Fuchs endothelial corneal dystrophy (FECD). We analyzed missense SLC4A11 mutations identified in FECD and CHED2 patients and expressed in transfected HEK 293 cells. Chemical cross-linking and migration in nondenaturing gels showed that SLC4A11 exists as a dimer. Furthermore, co-immunoprecipitation of epitope-tagged proteins revealed heteromeric interactions between wild-type (WT) and mutant SLC4A11 proteins. When expressed alone, FECD- and CHED2-causing mutant SLC4A11 proteins are primarily retained intracellularly. Co-expression with WT SLC4A11 partially rescued the cell surface trafficking of CHED2 mutants, but not FECD mutants. CHED2 alleles of SLC4A11 did not affect cell surface processing of WT SLC4A11. In contrast, FECD mutants...
American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2015
Intrauterine growth restriction (IUGR) has been associated with increased susceptibility 43 to my... more Intrauterine growth restriction (IUGR) has been associated with increased susceptibility 43 to myocardial ischemia/reperfusion injury (I/R). Exercise is an effective preventive 44 intervention for cardiovascular diseases; however, it may be detrimental in conditions of 45 compromised health. The aim of this study was to determine whether exercise training 46
American journal of physiology. Regulatory, integrative and comparative physiology, 2015
Preeclampsia is a disorder of pregnancy with a significant impact on maternal and fetal health. T... more Preeclampsia is a disorder of pregnancy with a significant impact on maternal and fetal health. The complexity of this multifactorial condition has precluded development of effective therapies and, although many potential pathways have been investigated, the etiology still requires clarification. Our group has investigated the scavenger lectin-like oxidized LDL (LOX-1) receptor, which may respond to factors released from the distressed placenta that contribute to the vascular pathologies observed in preeclampsia. Given the known beneficial effects of sodium tanshinone IIA sulfonate (STS; a component of Salvia miltiorrhiza) on vasodilation, reduction of oxidative stress, and lipid profiles, we have investigated its role as a potential treatment strategy. We hypothesized that STS would improve vascular endothelial function and, combined with a reduction in oxidative stress, would improve pregnancy outcomes in a rat model of preeclampsia (reduced uteroplacental perfusion pressure, RUPP...
To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina... more To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina and retinal pigment epithelial tissues were collected from canine subjects at the age of 3 weeks. Total RNA isolated from these tissues was reverse transcribed to make representative cDNA pools that were compared for differences in gene expression by using a subtractive hybridization technique referred to as representational difference analysis (RDA). Expression differences identified by RDA were confirmed and quantified by real-time reverse-transcription PCR. Mitochondrial morphology from leukocytes and skeletal muscle of normal and affected miniature Schnauzers was examined by transmission electron microscopy. RDA screening of retinal pigment epithelial cDNA identified differences in mRNA transcript coding for two mitochondrial (mt) proteins--cytochrome oxidase subunit 1 and NADH dehydrogenase subunit 6--in affected dogs. Contrary to expectations, these identified sequences did not co...
Background: Cardiac hypertrophy is central to the etiology of heart failure. Understanding the mo... more Background: Cardiac hypertrophy is central to the etiology of heart failure. Understanding the molecular pathways promoting cardiac hypertrophy may identify new targets for therapeutic intervention. Sodium-proton exchanger (NHE1) activity and expression levels in the heart are elevated in many models of hypertrophy through protein kinase C (PKC)/MAPK/ERK/p90 RSK pathway stimulation. Sustained NHE1 activity, however, requires an acid-loading pathway. Evidence suggests that the Cl − /HCO 3 − exchanger, AE3, provides this acid load. Here we explored the role of AE3 in the hypertrophic growth cascade of cardiomyocytes. Methods: AE3-deficient (ae3 −/− ) mice were compared to wildtype (WT) littermates to examine the role of AE3 protein in the development of cardiomyocyte hypertrophy. Mouse hearts were assessed by echocardiography. As well, responses of cultured cardiomyocytes to hypertrophic stimuli were measured. pH regulation capacity of ae3 −/− and WT cardiomyocytes was assessed in cultured cells loaded with the pH-sensitive dye, BCECF-AM.
World Journal of Microbiology and Biotechnology, 2005
... Dr M. Chirino-Trejo (Veterinary Microbiology, University of Saskatchewan). Mycobacterium aviu... more ... Dr M. Chirino-Trejo (Veterinary Microbiology, University of Saskatchewan). Mycobacterium avium and Mycobacterium bovis were obtained from C. Turenne (National Reference Centre for Mycobacteriology). Cryptosporidium parvum was obtained from Dr Brent Dixon (Bureau ...
Bicarbonate facilitate more than 50% of pH recovery in the acidotic myocardium, and have roles in... more Bicarbonate facilitate more than 50% of pH recovery in the acidotic myocardium, and have roles in cardiac hypertrophy and steady-state pH regulation. To determine which bicarbonate transporters are responsible for this activity, we measured the expression levels of all known HCO3 − -anion exchange proteins in mouse heart, by quantitative real time RT-PCR. Bicarbonate-anion exchangers are members of either the SLC4A or the SLC26A gene families. In neonatal and adult myocardium, AE1 (Slc4a1), AE2 (Slc4a2), AE3 (Slc4a3) (AE3fl and AE3c variants), Slc26a3 and Slc26a6 were expressed. Adult hearts expressed Slc26a3 and Slc4a1-3 mRNAs at similar levels, while Slc26a6 mRNA was about seven-fold higher than AE3, which was more abundant than any other. Immunohistochemistry revealed that Slc26a6 and AE3 are present in the plasma membrane of ventricular myocytes. Slc26a6 expression levels were higher in ventricle than atrium, whereas AE3 was detected only in ventricle. Cl − -HCO 3 − and Cl − -OH − exchange activity of SLC26A6 and AE3 were investigated in transfected HEK293 cells, using intracellular fluorescence measurements of 2 ,7 -bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF), to monitor intracellular pH (pH i ). Rates of pH i change were measured under HCO3 − -containing (Cl − -HCO 3 − ) or nominally HCO3 − -free (Cl − -OH − ) conditions. HCO3 − fluxes were similar for cells expressing AE3fl, SLC26A6 or Slc26a3, suggesting that they have similar transport activity. However, only SLC26A6 and Slc26a3 functioned as Cl − -OH − exchangers. Activation of α-adrenergic receptors, which stimulates protein kinase C, inhibited SLC26A6 Cl − -HCO 3 − exchange activity. We conclude that Slc26a6 is the predominant Cl − -HCO 3 − and Cl − -OH − exchanger of the myocardium and that Slc26a6 is negatively regulated upon α-adrenergic stimulation.
Prenatal hypoxia can alter the growth trajectory of the fetus and cause lasting health complicati... more Prenatal hypoxia can alter the growth trajectory of the fetus and cause lasting health complications including vascular dysfunction. We hypothesized that offspring that were intrauterine growth restricted (IUGR) because of prenatal hypoxia would exhibit altered vascular endothelin-1 (ET-1) signaling in later life. Isolated mesenteric artery responses to big ET-1 (bET-1) and ET-1 were assessed by using wire myography. Male IUGR offspring had 3-fold greater bET-1-induced vasoconstriction compared with controls (n=7 per group; P<0.001); NO synthase inhibition with L-N(G)-nitro-arginine-methyl ester potentiated bET-1-induced vasoconstriction, albeit this effect was 2-fold greater (P<0.05) in male control compared with IUGR offspring. Vascular responses to bET-1 were similar between female IUGR and control offspring (n=9-11 per group). In the presence of L-N(G)-nitro-arginine-methyl ester, pretreatment with the chymase inhibitor chymostatin, the gelatinase inhibitor GM6001, or the neutral endopeptidase inhibitor thiorphan did not alter responses to bET-1; however, the ET-converting enzyme inhibitor CGS35066 almost completely abolished vascular responses to bET-1 in control and IUGR groups. Systolic blood pressure in IUGR male offspring was more responsive to ET-1 antagonism in vivo compared with controls (-9 versus -4 mm Hg; n=5 per group; P=0.02); no such differences were observed in female offspring (n=5-6 per group). These results demonstrate that vascular ET-1 function is programmed by prenatal hypoxia and provide further insights into the sex differences in the long-term vascular effects of developmental stressors.
Canadian Journal of Physiology and Pharmacology, 2012
Pathological cardiac hypertrophy, the maladaptive remodelling of the myocardium, often progresses... more Pathological cardiac hypertrophy, the maladaptive remodelling of the myocardium, often progresses to heart failure. The sodium-proton exchanger (NHE1) and chloride-bicarbonate exchanger (AE3) have been implicated as important in the hypertrophic cascade. Carbonic anhydrase II (CAII) provides substrates for these transporters (protons and bicarbonate, respectively). CAII physically interacts with NHE1 and AE3, enhancing their respective ion transport activities by increasing the concentration of substrate at their transport sites. Earlier studies found that a broad-spectrum carbonic anhydrase inhibitor prevented cardiomyocyte hypertrophy (CH), suggesting that carbonic anhydrase is important in the development of hypertrophy. Here we investigated whether cytosolic CAII was the CA isoform involved in hypertrophy. Neonatal rat ventricular myocytes (NRVMs) were transduced with recombinant adenoviral constructs to over-express wildtype or catalytically inactive CAII (CAII-V143Y). Over-expression of wild-type CAII in NRVMs did not affect CH development. In contrast, CAII-V143Y over-expression suppressed the response to hypertrophic stimuli, suggesting that CAII-V143Y behaves in a dominant negative fashion over endogenous CAII to suppress hypertrophy. We also examined CAII-deficient (Car2) mice, whose hearts exhibit physiological hypertrophy without any decrease in cardiac function. Moreover, cardiomyocytes from Car2 mice do not respond to prohypertrophic stimulation. Together, these findings support a role of CAII in promoting CH.
Background: Carbonic anhydrase enzymes (CA) catalyze the reversible hydration of carbon dioxide t... more Background: Carbonic anhydrase enzymes (CA) catalyze the reversible hydration of carbon dioxide to bicarbonate 8 in mammalian cells. Trans-membrane transport of CA-produced bicarbonate contributes significantly to cellular pH 9 regulation. A body of evidence implicates pH-regulatory processes in the hypertrophic growth pathway 10 characteristic of hearts as they fail. In particular, Na + /H + exchange (NHE) activation is pro-hypertrophic and CA 11 activity activates NHE. Recently Cardrase (6-ethoxyzolamide), a CA inhibitor, was found to prevent and revert 12 agonist-stimulated cardiac hypertrophy (CH) in cultured cardiomyocytes. Our goal thus was to determine whether 13 hypertrophied human hearts have altered expression of CA isoforms. 14 Methods: We measured CA expression in hypertrophied human hearts to begin to examine the role of carbonic 15 anhydrase in progression of human heart failure. Ventricular biopsies were obtained from patients undergoing 16 cardiac surgery (CS, n = 14), or heart transplantation (HT, n = 13). CS patients presented mild/moderate concentric 17 left ventricular hypertrophy and normal right ventricles, with preserved ventricular function; ejection fractions 18 were~60%. Conversely, HT patients with failing hearts presented CH or ventricular dilation accompanied by 19 ventricular dysfunction and EF values of 20%. Non-hypertrophic, non-dilated ventricular samples served as controls. 20 Results: Expression of atrial and brain natriuretic peptide (ANP and BNP) were markers of CH. Hypertrophic 21 ventricles presented increased expression of CAII, CAIV, ANP, and BNP, mRNA levels, which increased in failing 22 hearts, measured by quantitative real-time PCR. CAII, CAIV, and ANP protein expression also increased approximately 23 two-fold in hypertrophic/dilated ventricles. 24
Mutations in the SLC4A11 protein, reported as a sodium-coupled borate transporter of the human pl... more Mutations in the SLC4A11 protein, reported as a sodium-coupled borate transporter of the human plasma membrane, are responsible for three corneal dystrophies (CD): congenital hereditary endothelial dystrophy type 2, Harboyan syndrome, and late-onset Fuch's CD. To develop a rational basis to understand these diseases, whose point mutations are found throughout the SLC4A11 sequence, we analyzed the protein biochemically. Hydropathy analysis and an existing topology model for SLC4A1 (AE1), a bicarbonate transporter with the lowest evolutionary sequence divergence from SLC4A11, formed the basis to propose an SLC4A11 topology model. Immunofluorescence studies revealed the cytosolic orientation of N-and C-termini of SLC4A11. Limited trypsinolysis of SLC4A11 partially mapped the folding of the membrane and cytoplasmic domains of the protein. The binding of SLC4A11 to a stilbenedisulfonate inhibitor resin (SITS-Affi-Gel) was prevented by preincubation with H 2 DIDS, with a significantly higher half-maximal effective concentration than AE1. We conclude that stilbenedisulfonates interact with SLC4A11 but with a lower affinity than other SLC4 proteins. Disease-causing mutants divided into two classes on the basis of the half-maximal [H 2 DIDS] required for resin displacement and the fraction of protein binding H 2 DIDS, likely representing mildly misfolded and grossly misfolded proteins. Disease-causing SLC4A11 mutants are retained in the endoplasmic reticulum of HEK 293 cells. This phenotype could be partially rescued in some cases by growing the cells at 30°C.
Introduction: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major endothel... more Introduction: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major endothelial receptor for oxidized low-density lipoprotein, is also involved in leukocyte recruitment. Systemic leukocyte activation in sepsis represents a crucial factor in the impairment of the microcirculation of different tissues, causing multiple organ failure and subsequently death. The aim of our experimental study was to evaluate the effects of LOX-1 inhibition on the endotoxin-induced leukocyte adherence and capillary perfusion within the intestinal microcirculation by using intravital microscopy (IVM). Methods: We used 40 male Lewis rats for the experiments. Ten placebo-treated animals served as a control. Thirty animals received 5 mg/kg lipopolysaccharide (LPS) intravenously. Ten endotoxemic rats remained untreated. In 10 LPS animals, we administered additionally 10 mg/kg LOX-1 antibodies. Ten further LPS animals received a nonspecific immunoglobulin (rat IgG) intravenously. After 2 hours of observation, intestinal microcirculation was evaluated by using IVM; the plasma levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) were determined; and LOX-1 expression was quantified in intestinal tissue with Western blot and reverse-transcription polymerase chain reaction (PCR).
Uploads
Papers by Anita Quon