Papers by Andrea Bordone Molini
SAR despeckling is a problem of paramount importance in remote sensing, since it represents the f... more SAR despeckling is a problem of paramount importance in remote sensing, since it represents the first step of many scene analysis algorithms. Recently, deep learning techniques have outperformed classical model-based despeckling algorithms. However, such methods require clean ground truth images for training, thus resorting to synthetically speckled optical images since clean SAR images cannot be acquired. In this paper, inspired by recent works on blind-spot denoising networks , we propose a self-supervised Bayesian despeckling method. The proposed method is trained employing only noisy images and can therefore learn features of real SAR images rather than synthetic data. We show that the performance of the proposed network is very close to the supervised training approach on synthetic data and competitive on real data.

Recently, convolutional neural networks (CNN) have been successfully applied to many remote sensi... more Recently, convolutional neural networks (CNN) have been successfully applied to many remote sensing problems. However , deep learning techniques for multi-image super-resolution from multitemporal unregistered imagery have received little attention so far. This work proposes a novel CNN-based technique that exploits both spatial and temporal correlations to combine multiple images. This novel framework integrates the spatial registration task directly inside the CNN, and allows to exploit the representation learning capabilities of the network to enhance registration accuracy. The entire super-resolution process relies on a single CNN with three main stages: shared 2D convolutions to extract high-dimensional features from the input images; a subnetwork proposing registration filters derived from the high-dimensional feature representations; 3D convolutions for slow fusion of the features from multiple images. The whole network can be trained end-to-end to recover a single high resolution image from multiple unregistered low resolution images. The method presented in this paper is the winner of the PROBA-V super-resolution challenge issued by the European Space Agency.
Uploads
Papers by Andrea Bordone Molini