Papers by Anand Ramamurthi

Biomedical sciences instrumentation
Platelet adhesion and aggregation restrict the clinical applicability of blood-contacting biomate... more Platelet adhesion and aggregation restrict the clinical applicability of blood-contacting biomaterials. Nitric oxide (NO) is a simple biological molecule that may be incorporated into biomaterials to inhibit platelet deposition. The toxicity of NO at superphysiological levels necessitates the determination of aqueous NO concentrations and fluxes that effectively inhibit platelet deposition. In this study, a novel NO delivery device has been developed to study NO inhibition of platelet deposition in a dynamic in vitro environment. Gaseous NO was delivered via a semipermeable membrane to a radiolabeled platelet suspension perfusing a thin flow slit. The membrane was coated with a platelet-agonistic protein. Spatial NO flux and concentration profiles in the flow slit are predictable using a mathematical model. Platelet inhibition was essentially complete at 0.1 ppm gaseous NO exposure, corresponding to a surface concentration of 0.09 nM and surface fluxes between 0.3 and 0.6 femtomoles cm-2s-1. These threshold values of NO exposure for significant platelet inhibition were unchanged irrespective of the platelet agonist, perfusion times, or shear rates. At lower NO exposures (0.02 ppm), platelet inhibition was only partial with the degree of inhibition dependent on the nature of the agonistic protein. This study yields information useful towards the design and development of biomaterials incorporating NO for the reduction of platelet-biomaterial interactions.

Stem cells translational medicine, 2013
Abdominal aortic aneurysms (AAAs) are potentially fatal conditions that are characterized by decr... more Abdominal aortic aneurysms (AAAs) are potentially fatal conditions that are characterized by decreased flexibility of the aortic wall due to proteolytic loss of the structural matrix. This leads to their gradual weakening and ultimate rupture. Drug-based inhibition of proteolytic enzymes may provide a nonsurgical treatment alternative for growing AAAs, although it might at best be sufficient to slow their growth. Regenerative repair of disrupted elastic matrix is required if regression of AAAs to a healthy state is to be achieved. Terminally differentiated adult and diseased vascular cells are poorly capable of affecting such regenerative repair. In this context, stem cells and their smooth muscle cell-like derivatives may represent alternate cell sources for regenerative AAA cell therapies. This article examines the pros and cons of using different autologous stem cell sources for AAA therapy, the requirements they must fulfill to provide therapeutic benefit, and the current progre...

Tissue engineering. Part A, 2011
Regression of abdominal aortic aneurysms (AAAs) via regeneration of new elastic matrix is constra... more Regression of abdominal aortic aneurysms (AAAs) via regeneration of new elastic matrix is constrained by poor elastin synthesis by adult vascular cells and absence of methods to stimulate the same. We recently showed hyaluronan oligomers (HA-o) and TGF-β1 (termed elastogenic factors) to enhance elastin synthesis and matrix formation by healthy rat aortic smooth muscle cells (RASMCs). We also determined that these factors could likewise elastogenically induce aneurysmal RASMCs isolated from periadventitial CaCl(2)-injury induced rat AAAs (aRASMCs). However, the factor doses should be increased for these diseased cell types, as even when induced, elastic matrix amounts are roughly one order of magnitude lower than those produced by healthy RASMCs. We presently investigate the dose-specific elastogenic effects of HA-o (0-20 μg/mL) and TGF-β1 (0-10 ng/mL) factors on aRASMCs and compare their phenotype and elastogenic responses to those of human AAA-derived SMCs (aHASMCs); we seek to d...

Journal of biomedical materials research. Part A, 2003
Hyaluronan (HA) gels (hylans) crosslinked with divinyl sulfone (DVS) are highly biocompatible and... more Hyaluronan (HA) gels (hylans) crosslinked with divinyl sulfone (DVS) are highly biocompatible and can be structurally modified to obtain desired mechanical properties that are attractive for their use as tissue-engineering scaffolds. However, unmodified hylan gels are not good substrates for cell attachment or infiltration, likely as a result of their smooth surface and the highly anionic nature of HA. This study investigated whether the cell-adhering characteristics of hylan gels could be enhanced by irradiation with ultraviolet (UV) light, with or without prior dehydration. The attachment and proliferation of neonatal rat smooth muscle cells atop these gels was compared with that on unmodified (control; C) or dehydrated (D) gels. UV-induced changes to gel structure and chemistry were characterized by confocal and electron microscopy, and fluorphore-assisted carbohydrate electrophoresis (FACE). Cell attachment was sparse on both unmodified (C) and dehydrated (D) gels. Significantly...

Journal of biomedical materials research, 2002
Hyaluronic acid (HA)-based polymers (hylans) are highly biocompatible and can be structurally mod... more Hyaluronic acid (HA)-based polymers (hylans) are highly biocompatible and can be structurally modified to obtain desired mechanical properties. This study evaluated divinyl sulfone-crosslinked solid and particulate hylans as cellular scaffolds. These two hylan types differ in surface characteristics, mode of preparation, HA content, and extent of crosslinking. Neonatal rat aortic smooth muscle cells were cultured on hylan gels coated with matrix factors including collagen I, ECM gel, laminin, and fibronectin and on uncoated controls for < or =4 weeks. Cell attachment was sparse on uncoated controls but significantly enhanced on coated gels. Cell morphology was influenced by the identity of the matrix factors coated and the surface topography of the hylan gels. Cells attached to coated particulate gels appeared either highly spread (collagen, fibronectin) or irregularly shaped (ECM gel, laminin). Cells on laminin and fibronectin-coated solid gels were rounded and nonproliferative....
Journal of Tissue Science & Engineering, 2011
... source are credited. Perspectives on Strategies to Direct Elastic Matrix Assembly Chris A. Ba... more ... source are credited. Perspectives on Strategies to Direct Elastic Matrix Assembly Chris A. Bashur and Anand Ramamurthi* Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA Abstract Progress in ...

Journal of Tissue Engineering and Regenerative Medicine, 2014
Abdominal aortic aneurysms (AAAs) involve slow proteolysis and loss of structural matrix componen... more Abdominal aortic aneurysms (AAAs) involve slow proteolysis and loss of structural matrix components (collagen and elastin), which lead to wall thinning, weakening and ultimate rupture. At this time, no established non-surgical therapy is available to slow or arrest AAA growth. Inhibiting matrix metalloproteases (MMPs; e.g. MMP2 and -9) overexpressed within AAAs is insufficient to arrest AAA growth, since resident smooth muscle cells (SMCs) are poorly elastogenic and cannot overcome elastolysis to reinstate a healthy elastic matrix. Towards overcoming this limitation, this first study sought to determine the utility of rat bone marrow mesenchymal stem cell (BM-MSC)-derived SMCs to stimulate elastin and elastic matrix synthesis and assembly by aneurysmal SMCs (EaRASMCs). BM-MSCs were successfully differentiated into cells of an SMC lineage (SMLCs). Our study indicates that BM-MSC-derived SMLCs secrete trophic factors, contained in conditioned medium (CM) from their cultures, that, when exposed to EaRASMC cultures in real time, stimulate elastin precursor and matrix deposition and crosslinking by these elastogenically deficient cells, with added benefits in terms of attenuating MMPs, specifically MMP9. The results thus lend support to a proposed cell therapy for AAAs, based on the use of BM-MSC-derived SMLCs. Although we observed no particular improvement in elastic fibre formation, no attenuation of MMP2 activity and increase in amounts of active MMP2 enzyme, we believe that this study justifies follow-up studies to improve upon these outcomes. Future studies will explore the effects of concentrated CM collected from long-term SMLC cultures on EaRASMCs and also investigate the elastogenic output of SMLCs themselves. Copyright © 2014 John Wiley &amp;amp;amp;amp;amp;amp;amp;amp;amp; Sons, Ltd.

Elastin is a vital component of the extracellular matrix, providing soft connective tissues with ... more Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures.
Tissue Engineering Part B: Reviews, 2012

Tissue Engineering Part A, 2013
The generation of vascular grafts by recruiting autologous cells within the peritoneal cavity has... more The generation of vascular grafts by recruiting autologous cells within the peritoneal cavity has shown promise. However, the microenvironment affects cell differentiation and elastic matrix production. Therefore, this study determined the impact of systematic changes in the average fiber diameter of electrospun poly(ɛ-caprolactone) conduits, and the pore size of pouches used to enclose the conduits, on recruited cells. After 2 weeks in the peritoneal cavity, fibrous capsules formed containing macrophages, α-smooth muscle actin (α-SMA)(+) and SM22α(+) myofibroblastic or smooth muscle like-cells, and what appeared to be mesothelial cells on the outer surfaces. These cells infiltrated and deposited matrix (e.g., collagen, hyaluoronan, and limited elastin) within conduit walls. Constructs enclosed within the largest pore pouches exhibited significantly better tissue generation responses (e.g., better cell infiltration, elongation, and matrix deposition). Additionally, the healing response was impacted by the conduit average fiber diameter, and consequently, the effective pore diameter, with the largest diameter fibers promoting the most positive healing response (e.g., greater total cellularity, extracellular matrix deposition, and α-SMA(+) cells). Six weeks post-intra-aortal grafting, constructs were occluded, but significant remodeling also occurred in the arterial microenvironment. Overall, these results demonstrate the importance of microenvironmental cues on recruited peritoneal cells and the necessity of developing strategies to further improve elastic matrix synthesis.

Tissue Engineering Part A, 2011
Although abdominal aortic aneurysms (AAA) can be potentially stabilized by inhibiting inflammator... more Although abdominal aortic aneurysms (AAA) can be potentially stabilized by inhibiting inflammatory cell recruitment and their release of proteolytic enzymes, active AAA regression is not possible without regeneration of new elastic matrix structures. Unfortunately, postneonatal vascular smooth muscle cells (SMCs), healthy, and likely more so, diseased cells, poorly synthesize or remodel elastic fibers, impeding any effort directed at regenerative AAA treatment. Previously, we determined the eleastogenic benefits of oligomers (HA-o; 4-6 mers) of the glycosaminoglycan, hyaluronan (HA) and transforming growth factor-b1 (TGF-b1) to healthy SMCs. Since AAAs are often diagnosed only late in development when matrix disruption is severe, we now determine if elastogenic upregulation of SMCs from late-stage AAAs ( > 100% diameter increase) is possible. AAAs were induced by perfusion of rat infrarenal aortae with porcine pancreatic elastase. Elastic matrix degradation, vessel expansion (*120%), inflammatory cell infiltration, and enhanced activity of matrix-metalloproteases (MMPs) 2 and 9 resulted, paralleling human AAAs. Aneurysmal SMCs (EaRASMCs) maintained a diseased phenotype in 2D cell culture and exhibited patterns of gene expression different from healthy rat aortic SMCs (RASMCs). Relative to passage-matched healthy RASMCs, unstimulated EaRASMCs produced far less tropoelastin and matrix elastin. Exogenous TGF-b and HA-o (termed ''factors'') significantly decreased EaRASMC proliferation and enhanced tropoelastin synthesis, though only at the highest provided dose combination (20 mg/mL of HA-o, 10 ng/mL of TGF-b); despite such enhancement, tropoelastin amounts were only *40% of amounts synthesized by healthy RASMC cultures. Differently, elastic matrix synthesis was enhanced beyond amounts synthesized by healthy RASMCs (112%), even at lower doses of factors (2 mg/mL of HA-o and 5 ng/mL of TGF-b). The factors also enhanced elastic fiber deposition over untreated EaRASMC cultures and restored several genes whose expression was altered in EaRASMC cultures back to levels expressed by healthy RASMCs. However, the activity of MMPs 2 and 9 generated by EaRASMC cultures was unaffected by the factors/factor dose. The study confirms that SMCs from advanced AAAs can be elastogenically induced, although much higher doses of elastogenic factors are required for induction relative to healthy SMCs. Also, the factors do not appear to inhibit MMP activity, vital to preserve existing elastic matrix structures that serve as nucleation sites for new elastic fiber deposition. Thus, to enhance net accumulation of newly regenerated elastic matrix, toward possibly regressing AAAs, codelivery of MMP inhibitors may be necessitated.

Tissue Engineering Part A, 2014
In vitro tissue engineering of vascular conduits requires a synergy between several external fact... more In vitro tissue engineering of vascular conduits requires a synergy between several external factors, including biochemical supplementation and mechanotranductive stimulation. The goal of this study was to improve adult human vascular smooth muscle cell orientation and elastic matrix synthesis within 3D tubular collagen gel constructs. We used a combination of elastogenic factors (EFs) previously tested in our lab, along with cyclic circumferential strains at low amplitude (2.5%) delivered at a range of frequencies (0.5, 1.5, and 3 Hz). After 21 days of culture, the constructs were analyzed for elastic matrix outcomes, activity of matrix metalloproteinases (MMPs)-2 and -9, cell densities and phenotype, and mechanical properties of constructs. While cell densities remained unaffected by the addition of stretch, contractile phenotypic markers were elevated in all stretched constructs relative to control. Constructs cultured with EFs stretched at 1.5 Hz exhibited the maximum elastin mRNA expression and total matrix elastin (over sixfold vs. the static EFs control). MMP-2 content was comparable in all treatment conditions, but MMP-9 levels were elevated at the higher frequencies (1.5 and 3 Hz). Minimal circumferential orientation was achieved and the mechanical properties remained comparable among the treatment conditions. Overall, constructs treated with EFs and stretched at 1.5 Hz exhibited the most elastogenic outcomes.

Tissue Engineering Part A, 2009
Current efforts to tissue engineer elastin-rich vascular constructs and grafts are limited becaus... more Current efforts to tissue engineer elastin-rich vascular constructs and grafts are limited because of the poor elastogenesis of adult vascular smooth muscle cells (SMCs) and the unavailability of appropriate cues to upregulate and enhance cross-linking of elastin precursors (tropoelastin) into organized, mature elastin fibers. We earlier showed that hyaluronan (HA) fragments greatly enhance tropo- and matrix-elastin synthesis by SMCs, although the yield of matrix elastin is low. To improve matrix yields, here we investigate the benefits of adding copper (Cu(2+)) ions (0.01 M and 0.1 M), concurrent with HA (756-2000 kDa), to enhance lysyl oxidase (LOX)-mediated elastin cross-linking machinery. Although absolute elastin amounts in test groups were not different from those in controls, on a per-cell basis, 0.1 M of Cu(2+) ions slowed cell proliferation (5.6 +/- 2.3-fold increase over 21 days vs 22.9 +/- 4.2-fold for non-additive controls), stimulated synthesis of collagen (4.1 +/- 0.4-fold), tropoelastin (4.1 +/- 0.05-fold) and cross-linked matrix elastin (4.2 +/- 0.7-fold). LOX protein synthesis increased 2.5 times in the presence of 0.1 M of Cu(2+) ions, and these trends were maintained even in the presence of HA fragments, although LOX functional activity remained unchanged in all cases. The abundance of elastin and LOX in cell layers cultured with 0.1 M of Cu(2+) ions and HA fragments was qualitatively confirmed using immunoflourescence. Scanning electron microscopy images showed that SMC cultures supplemented with 0.1 M of Cu(2+) ions and HA oligomers and large fragments exhibited better deposition of mature elastic fibers ( approximately 1 mum diameter). However, 0.01 M of Cu(2+) ions did not have any beneficial effect on elastin regeneration. In conclusion, the results suggest that supplying 0.1 M of Cu(2+) ions to SMCs to concurrently (a) enhance per-cell yield of elastin matrix while allowing cells to remain viable and synthetic and not density-arrested in long-term culture because of their moderating effects on otherwise rapid cell proliferation and (b) provide additional benefits of enhanced elastin fiber formation and cross-linking within these tissue-engineered constructs.

Tissue Engineering Part A, 2009
Elastin is a vital structural and regulatory matrix protein that plays an important role in confe... more Elastin is a vital structural and regulatory matrix protein that plays an important role in conferring elasticity to blood vessel wall. Previous tissue engineering approaches to regenerate elastin in situ or within tissue engineering constructs are curtailed by innate poor elastin synthesis potential by adult vascular smooth muscle cells (SMCs). Currently, we seek to develop cellular cues to enhance tropoelastin synthesis and improve elastin matrix yield, stability, and ultrastructure. Our earlier studies attest to the elastogenic utility of hyaluronan (HA)-based cellular cues, though their effects are fragment size dependent and dose dependent, with HA oligomers deemed most elastogenic. We presently show transforming growth factor beta 1 (TGF-b1) and HA oligomers, when provided concurrently, to synergistically and dramatically improve elastin matrix regeneration by adult vascular SMCs. Together, these cues suppress SMC proliferation, enhance synthesis of tropoelastin (8-fold) and matrix elastin protein (5.5-fold), and also improve matrix elastin yield (45% of total elastin vs. 10% for nonadditive controls), possibly by more efficient recruitment of tropoelastin for crosslinking. The density of desmosine crosslinks within the elastin matrix was itself attenuated, although the cues together modestly increased production and activity of the elastin crosslinking enzyme, lysyl oxidase. TGF-b1 and HA oligomers together induced much greater assembly of mature elastin fibers than they did separately, and did not induce matrix calcification. The present outcomes might be great utility to therapeutic regeneration of elastin matrix networks in situ within elastin-compromised vessels, and within tissue-engineered vascular graft replacements.

Tissue Engineering Part A, 2009
The progression of aortic aneurysms (AAs) is typically associated with an activated smooth muscle... more The progression of aortic aneurysms (AAs) is typically associated with an activated smooth muscle cell (SMC) phenotype, diminished density of mature medial elastic fibers, and an elevated presence of matrix-degrading enzymes, which ultimately leads to vessel rupture. Currently, no surgical or nonsurgical methods are available to regress aneurysms via regeneration of new elastic matrices, particularly because of inherently poor elastin synthesis by adult vascular cells and absence of tools to stimulate the same. We seek to address this void in this study. We recently showed 0.2 microg/mL of hyaluronan oligomers and 1 ng/mL of transforming growth factor-beta1 (termed elastogenic factors) to dramatically enhance elastin synthesis and matrix formation by healthy aortic SMCs. In this study, the effect of these factors, alone or together, on suppressing procalcific and elastolytic activities of aneurysmal vascular cells, and improving their elastin matrix synthesis and assembly is examined. Periadventitial injury with calcium chloride was used to induce AAs in rats, and approximately 45% increase in aortic diameter was observed after 4 weeks. Aneurysmal SMCs isolated from these AA segments produced higher levels of inflammatory markers matrix metalloproteinases-2 and 9 elastase activity and calcific deposits, while synthesizing significantly less collagen, tropoelastin, and matrix elastin proteins over a 3-week culture period, relative to healthy SMCs. While hyaluronan oligomers alone significantly suppressed aneurysmal cell proliferation and promoted 20-50% increases in collagen and elastin synthesis (p &amp;amp;amp;lt; 0.01), transforming growth factor-beta1 alone had no effect on cellular proliferation and elastin synthesis. However, provision of factors together resulted in significantly higher amounts of collagen/elastin protein synthesis and crosslinking, by upregulating lysyl oxidase and desmosine. Compared to their individual contributions, the factors together were highly effective in minimizing the release of inflammatory enzymes, and encouraging elastic fiber formation. Since elastic matrix amounts were one order of magnitude lower than that observed with healthy cells, even upon elastogenic stimulation at doses optimized previously for healthy cells, increased doses are likely required and must be reoptimized for diseased cells. Despite this, the results point to the potential utility of these elastogenic factors in regenerating elastic matrices within AAs.

Tissue Engineering Part A, 2011
The structural stability of a cyclically distending elastic artery and the healthy functioning of... more The structural stability of a cyclically distending elastic artery and the healthy functioning of vascular smooth muscle cells (SMCs) within are maintained by the presence of an intact elastic matrix and its principal protein, elastin. The accelerated degradation of the elastic matrix, which occurs in several vascular diseases, coupled with the poor ability of adult SMCs to regenerate lost elastin, can therefore adversely impact vascular homeostasis. Similarly, efforts to tissue engineer elastic matrix structures are constrained by our inability to induce adult cells to synthesize tropoelastin precursors and to crosslink them into architectural mimics of native elastic matrices, especially within engineered constructs where SMCs/fibroblasts primarily deposit collagen in abundance. In this study, we have shown that transforming growth factor-beta1 (TGF-β1) and hyaluronan oligomers (HA-o) synergistically enhance elastic matrix deposition by adult rat aortic SMCs (RASMCs) seeded within nonelastogenic, statically loaded three-dimensional gels, composed of nonelastogenic type-I collagen. While there was no substantial increase in production of tropoelastin within experimental cases compared to the nonadditive control cultures over 3 weeks, we observed significant increases in matrix elastin deposition; soluble matrix elastin in constructs that received the lowest doses of TGF-β1 with respective doses of HA-o, and insoluble matrix at the highest doses that corresponded with elevated lysyl-oxidase protein quantities. However, despite elastogenic induction, overall matrix yields remained poor in all experimental cases. At all provided doses, the factors reduced the production of matrix metalloproteinases (MMP)-9, especially the active enzyme, though MMP-2 levels were lowered only in constructs cultured with the higher doses of TGF-β1. Immuno-fluorescence showed elastic fibers within the collagen constructs to be discontinuous, except at the edges of the constructs. Von Kossa staining revealed no calcific deposits in any of the cases. This study confirms the benefits of utilizing TGF-β1 and HA-o in inducing matrix elastin synthesis by adult RASMCs over nonadditive controls, within a collagenous environment, that is not inherently conducive to elastogenesis.

Tissue Engineering, 2007
Hydrogels (hylans AU1 c ) containing divinyl sulfone (DVS)-crosslinked hyaluronan (HA) are potent... more Hydrogels (hylans AU1 c ) containing divinyl sulfone (DVS)-crosslinked hyaluronan (HA) are potentially useful implant biomaterials because of their non-cytotoxicity and -antigenicity. However, to successfully fulfill their intended role in vivo, their properties (e.g., mechanics, pore size, surface topography, hydrophilicity, swelling) must be modulated to match the demands of the target application. This study explored whether controlled irradiation with gamma (c) can strengthen hylans and modulate their physical and biologic properties, as has previously been shown to be possible with other natural and synthetic polymers. Hydrated hylans containing two different amounts of DVS were irradiated in vacuum to increasing doses of c (0-13.5 kGy). The properties of the irradiated gels were compared with those of non-irradiated controls. Changes to bulk structure were evaluated using swelling tests, surface topography and pore structure were evaluated using scanning electron microscopy, mechanics were evaluated using unconfined compression tests, and surface hydrophilicity was evaluated by measuring contact angle changes AU2 c . Irradiated gels exhibited lower swelling capacity, structural weakening, increase in elasticity, surface texturing, increased pore size, and decreased surface hydrophilicity in direct correlation with received dose. Cells adhered and proliferated readily on the irradiated gel surfaces but not on control gels. The irradiated gels, however, deteriorated during long-term (<60 days) storage. Irradiation of hylans in a lyophilized state instead resulted in gels that were more compact, swelled less, and exhibited smaller pores than their hydrated counterparts. The results show that c-irradiation, although useful to modulate hylan gel properties, presents challenges of degradation that may be associated with its generation of free-radicals, HA chain fragmentation, and disruption of DVS crosslinks, particularly when the gels are irradiated in their native hydrated state (>98% water content). Future studies will optimize parameters for c-mediated modulation of hylan properties through irradiation under water-free conditions.

Thrombosis Research, 2001
Vascular thrombosis is regulated via the release of several constituents from the vascular endoth... more Vascular thrombosis is regulated via the release of several constituents from the vascular endothelium, including nucleoside triphosphate diphosphohydrolases (NTPDases or ectonucleotidases), nitric oxide (NO), and eicosanoids. Currently, it is unknown how these constituents interact in the inhibition of platelet aggregation and adhesion. To investigate the combined effects of NO and NTPDase on platelet deposition sequestration, an in vitro study was performed to compare inhibition of platelet deposition to a biomaterial by NO in the absence or presence of soluble NTPDase. Results of the platelet inhibition studies with NO and NTPDase conclusively show that the inhibitory effects of NTPDase and NO are additive. The platelet inhibitory potency in the presence of NO was enhanced by NTPDase in a dose-dependent manner, for a given NO exposure. This augmentation is independent of aspirin; the ability of NTPDase or NO alone to inhibit platelet deposition is also independent of aspirin. Clearly, NO and NTPDase independently contribute to platelet inhibition via different mechanisms. The inaction of NO on the activity of NTPDase confirmed that NO or reaction products in the presence of O(2) do not interact with NTPDase directly.

Organogenesis, 2008
Angiogenesis represents the outgrowth of new blood vessels from existing ones, a physiologic proc... more Angiogenesis represents the outgrowth of new blood vessels from existing ones, a physiologic process that is vital to supply nourishment to newly forming tissues during development and tissue remodeling and repair (wound healing). Regulation of angiogenesis in the healthy body occurs through a fine balance of angiogenesis-stimulating factors and angiogenesis inhibitors. When this balance is disturbed, excessive or deficient angiogenesis can result and contribute to development of a wide variety of pathological conditions. The therapeutic stimulation or suppression of angiogenesis could be the key to abrogating these diseases. In recent years, tissue engineering has emerged as a promising technology for regenerating tissues or organs that are diseased beyond repair. Among the critical challenges that deter the practical realization of the vision of regenerating functional tissues for clinical implantation, is how tissues of finite size can be regenerated and maintained viable in the long-term. Since the diffusion of nutrients and essential gases to cells, and removal of metabolic wastes is typically limited to a depth of 150-250 microm from a capillary (3-10 cells thick), tissue constructs must mandatorily permit in-growth of a blood capillary network to nourish and sustain the viability of cells within. The purpose of this article is to provide an overview of the role and significance of hyaluronan (HA), a glycosaminoglycan (GAG) component of connective tissues, in physiologic and pathological angiogenesis, its applicability as a therapeutic to stimulate or suppress angiogenesis in situ within necrotic tissues in vivo, and the factors determining its potential utility as a pro-angiogenic stimulus that will enable tissue engineering of neo-vascularized and functional tissue constructs for clinical use.
The Journal of Urology, 2012
Uploads
Papers by Anand Ramamurthi