Papers by Alexandra Schambony

Histology and histopathology, 2003
Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocri... more Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancre...
Journal of reproduction and fertility. Supplement, 1998
Cysteine rich secretory proteins (CRISPs) have been detected immunochemically in the equine male ... more Cysteine rich secretory proteins (CRISPs) have been detected immunochemically in the equine male genital tract. CRISPs are secretory products of the epididymis, the ampulla and the seminal vesicle. A particular feature of the horse is the abundance of CRISPs in seminal plasma. CRISPs can also be detected in extracts of testicular, epididymal and ejaculated spermatozoa in increasing amounts. Unlike other seminal plasma proteins, they cannot be removed completely from spermatozoa by high salt treatment. The remaining CRISP antigens are localized on the midpiece, and the postacrosomal and equatorial region of the sperm head. Tissue distribution and localization of CRISPs on equine spermatozoa point to a role of these proteins in epididymal sperm maturation and equine reproduction.
Advances in Developmental Biology, 2007

Lrp5/6 are crucial coreceptors for Wnt/-catenin signaling, a pathway biochemically distinct from... more Lrp5/6 are crucial coreceptors for Wnt/-catenin signaling, a pathway biochemically distinct from noncanonical Wnt signaling pathways. Here, we examined the possible participation of Lrp5/6 in noncanonical Wnt signaling. We found that Lrp6 physically interacts with Wnt5a, but that this does not lead to phosphorylation of Lrp6 or activation of the Wnt/-catenin pathway. Overexpression of Lrp6 blocks activation of the Wnt5a downstream target Rac1, and this effect is dependent on intact Lrp6 extracellular domains. These results suggested that the extracellular domain of Lrp6 inhibits noncanonical Wnt signaling in vitro. In vivo, Lrp6؊/؊ mice exhibited exencephaly and a heart phenotype. Surprisingly, these defects were rescued by deletion of Wnt5a, indicating that the phenotypes resulted from noncanonical Wnt gain-of-function. Similarly, Lrp5 and Lrp6 antisense morpholino-treated Xenopus embryos exhibited convergent extension and heart phenotypes that were rescued by knockdown of noncanonical XWnt5a and XWnt11. Thus, we provide evidence that the extracellular domains of Lrp5/6 behave as physiologically relevant inhibitors of noncanonical Wnt signaling during Xenopus and mouse development in vivo.

PLoS ONE, 2014
β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation o... more β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca(2+) cascades. Wnt/Planar Cell Polarity and Wnt/Ca(2+) pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca(2+) signaling cascade upstream of Protein Kinase C (PKC) and Ca(2+)/Calmodulin-dependent Protein Kinase II (CamKII). We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca(2+) signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.

Molecular Biology of the Cell, 2015
Wnt ligands trigger the activation of a variety of β-catenin-dependent and βcatenin-independent i... more Wnt ligands trigger the activation of a variety of β-catenin-dependent and βcatenin-independent intracellular signaling cascades. Despite the variations in intracellular signaling, Wnt pathways share the effector proteins frizzled, dishevelled, and β-arrestin. It is unclear how the specific activation of individual branches and the integration of multiple signals are achieved. We hypothesized that the composition of dishevelled-β-arrestin protein complexes contributes to signal specificity and identified CamKII as an interaction partner of the dishevelled-β-arrestin protein complex by quantitative functional proteomics. Specifically, we found that CamKII isoforms interact differentially with the three vertebrate dishevelled proteins. Dvl1 is required for the activation of CamKII and PKC in the Wnt/Ca 2+ pathway. However, CamKII interacts with Dvl2 but not with Dvl1, and Dvl2 is necessary to mediate CamKII function downstream of Dvl1 in convergent extension movements in Xenopus gastrulation. Our findings indicate that the different Dvl proteins and the composition of dishevelledβ-arrestin protein complexes contribute to the specific activation of individual branches of Wnt signaling.

Journal of Biological Chemistry, 2014
Dishevelled-3 (Dvl3), a key component of the Wnt signaling pathways, acts downstream of Frizzled ... more Dishevelled-3 (Dvl3), a key component of the Wnt signaling pathways, acts downstream of Frizzled (Fzd) receptors and gets heavily phosphorylated in response to pathway activation by Wnt ligands. Casein kinase 1ϵ (CK1ϵ) was identified as the major kinase responsible for Wnt-induced Dvl3 phosphorylation. Currently it is not clear which Dvl residues are phosphorylated and what is the consequence of individual phosphorylation events. In the present study we employed mass spectrometry to analyze in a comprehensive way the phosphorylation of human Dvl3 induced by CK1ϵ. Our analysis revealed >50 phosphorylation sites on Dvl3; only a minority of these sites was found dynamically induced after co-expression of CK1ϵ, and surprisingly, phosphorylation of one cluster of modified residues was down-regulated. Dynamically phosphorylated sites were analyzed functionally. Mutations within PDZ domain (S280A and S311A) reduced the ability of Dvl3 to activate TCF/LEF (T-cell factor/lymphoid enhancer factor)-driven transcription and induce secondary axis in Xenopus embryos. In contrast, mutations of clustered Ser/Thr in the Dvl3 C terminus prevented ability of CK1ϵ to induce electrophoretic mobility shift of Dvl3 and its even subcellular localization. Surprisingly, mobility shift and subcellular localization changes induced by Fzd5, a Wnt receptor, were in all these mutants indistinguishable from wild type Dvl3. In summary, our data on the molecular level (i) support previous the assumption that CK1ϵ acts via phosphorylation of distinct residues as the activator as well as the shut-off signal of Wnt/β-catenin signaling and (ii) suggest that CK1ϵ acts on Dvl via different mechanism than Fzd5.

The FASEB Journal, 2010
Wnt3a and noncanonical Wnt5a stimulate casein-kinase-1 (CK1) -mediated phosphorylation of Dvl, vi... more Wnt3a and noncanonical Wnt5a stimulate casein-kinase-1 (CK1) -mediated phosphorylation of Dvl, visualized as electrophoretic mobility shift [phosphorylated and shifted Dvl (ps-Dvl)]. However, the role of this phosphorylation remains obscure. Here we report the functional interaction of ps-Dvl with the receptor tyrosine kinase Ror2, which is an alternative Wnt receptor and is able to inhibit canonical Wnt signaling. We demonstrate interaction between Ror2 and ps-Dvl at the cell membrane after Wnt3a or Wnt5a stimulus dependent on CK1. Ps-Dvl interacts with the C-terminal proline-serine-threonine-rich domain of Ror2, which is required for efficient inhibition of canonical Wnt signaling. We further show that the Dvl C terminus, which seems to be exposed in ps-Dvl and efficiently binds Ror2, is an intrinsic negative regulator of the canonical Wnt pathway downstream of -catenin. The Dvl C terminus is necessary and sufficient to inhibit canonical Wnt/-catenin signaling, which is dependent on the presence of Ror2. Furthermore, both the Dvl C terminus and CK1 can inhibit the Wnt5a/Ror2/ATF2 pathway in mammalian cells and Xenopus explant cultures.
The EMBO Journal, 2004
Convergent extension movements occur ubiquitously in animal development. This special type of cel... more Convergent extension movements occur ubiquitously in animal development. This special type of cell movement is controlled by the Wnt/planar cell polarity (PCP) pathway. Here we show that Xenopus paraxial protocadherin (XPAPC) functionally interacts with the Wnt/PCP pathway in the control of convergence and extension (CE) movements in Xenopus laevis. XPAPC functions as a signalling molecule that coordinates cell polarity of the involuting mesoderm in mediolateral orientation and thus selectively promotes convergence in CE movements. XPAPC signals through the small GTPases Rho A and Rac 1 and c-jun N-terminal kinase (JNK). Loss of XPAPC function blocks Rho A-mediated JNK activation. Despite common downstream components, XPAPC and Wnt/PCP signalling are not redundant, and the activity of both, XPAPC and PCP signalling, is required to coordinate CE movements.

Proceedings of the National Academy of Sciences, 2007
The Wnt/-catenin signaling pathway is crucial for proper embryonic development and tissue homeos... more The Wnt/-catenin signaling pathway is crucial for proper embryonic development and tissue homeostasis. The phosphoprotein dishevelled (Dvl) is an integral part of Wnt signaling and has recently been shown to interact with the multifunctional scaffolding protein -arrestin. Using Dvl deletion constructs, we found that -arrestin binds a region N-terminal of the PDZ domain of Dvl, which contains casein kinase 1 (CK1) phosphorylation sites. Inhibition of Wnt signaling by CK1 inhibitors reduced the binding of -arrestin to Dvl. Moreover, mouse embryonic fibroblasts lacking -arrestins were able to phosphorylate LRP6 in response to Wnt-3a but decreased the activation of Dvl and blocked -catenin signaling. In addition, we found that -arrestin can bind axin and forms a trimeric complex with axin and Dvl. Furthermore, treatment of Xenopus laevis embryos with -arrestin morpholinos reduced the activation of endogenous -catenin, decreased the expression of the -catenin target gene, Xnr3, and blocked axis duplication induced by X-Wnt-8, CK1, or Dsh⌬DEP, but not by -catenin. Thus, our results identify -arrestin as a necessary component for Wnt/ -catenin signaling, linking Dvl and axin, and open a vast array of signaling avenues and possibilities for cross-talk with other arrestin-dependent signaling pathways.

Proceedings of the National Academy of Sciences, 2012
Wnt binding to members of the seven-span transmembrane Frizzled (Fz) receptor family controls ess... more Wnt binding to members of the seven-span transmembrane Frizzled (Fz) receptor family controls essential cell fate decisions and tissue polarity during development and in adulthood. The Fzmediated membrane recruitment of the cytoplasmic effector Dishevelled (Dvl) is a critical step in Wnt/β-catenin signaling initiation, but how Fz and Dvl act together to drive downstream signaling events remains largely undefined. Here, we use an Fz peptide-based microarray to uncover a mechanistically important role of the bipartite Dvl DEP domain and C terminal region (DEP-C) in binding a three-segmented discontinuous motif in Fz. We show that cooperative use of two conserved motifs in the third intracellular loop and the classic C-terminal motif of Fz is required for DEP-C binding and Wnt-induced β-catenin activation in cultured cells and Xenopus embryos. Within the complex, the Dvl DEP domain mainly binds the Fz C-terminal tail, whereas a short region at the Dvl C-terminal end is required to bind the Fz third loop and stabilize the Fz-Dvl interaction. We conclude that Dvl DEP-C binding to Fz is a key event in Wnt-mediated signaling relay to β-catenin. The discontinuous nature of the Fz-Dvl interface may allow for precise regulation of the interaction in the control of Wnt-dependent cellular responses.

Mechanisms of Development, 2003
We cloned Xenopus laevis CRISP, XCRISP, a homologue of the mammalian family of cysteine-rich secr... more We cloned Xenopus laevis CRISP, XCRISP, a homologue of the mammalian family of cysteine-rich secretory proteins (CRISPs), which has been previously identified as a Wnt3a/noggin responsive gene in an expression screen [Mech. Dev. 87 (1999) 21]. We detected XCRISP expression exclusively in the hatching gland. XCRISP enters the secretory pathway and accumulates on the surface of presumptive hatching gland cells. Overexpression studies of XCRISP and XCRISP-mutants show that XCRISP induces premature hatching of embryos preceded by degradation of the vitelline envelope. A deletion mutant that lacks a 35 amino acid domain even accelerates hatching, while further deletion of the carboxy-terminus reverses these effects. From our studies, we conclude that XCRISP is sufficient to induce degradation of vitelline envelopes and that this activity maps to the most C-terminal amino acids, while the adjacent domain regulates XCRISP activity. q

Journal of Biological Chemistry, 2012
Wnt/β-catenin signaling is negatively controlled by the adenomatous polyposis coli (APC) tumor su... more Wnt/β-catenin signaling is negatively controlled by the adenomatous polyposis coli (APC) tumor suppressor, which induces proteasomal degradation of β-catenin as part of the β-catenin destruction complex. Amer2 (APC membrane recruitment 2; FAM123A) is a direct interaction partner of APC, related to the tumor suppressor Amer1/WTX, but its function in Wnt signaling is not known. Here, we show that Amer2 recruits APC to the plasma membrane by binding to phosphatidylinositol 4,5-bisphosphate lipids via lysine-rich motifs and that APC links β-catenin and the destruction complex components axin and conductin to Amer2. Knockdown of Amer2 increased Wnt target gene expression and reporter activity in cell lines, and overexpression reduced reporter activity, which required membrane association of Amer2. In Xenopus embryos, Amer2 is expressed mainly in the dorsal neuroectoderm and neural tissues. Down-regulation of Amer2 by specific morpholino oligonucleotides altered neuroectodermal patterning, which could be rescued by expression of a dominant-negative mutant of Lef1 that interferes with β-catenin-dependent transcription. Our data characterize Amer2 for the first time as a negative regulator of Wnt signaling both in cell lines and in vivo and define Amer proteins as a novel family of Wnt pathway regulators.
Journal of Biological Chemistry, 2012

Gene, 2002
Acidic epididymal glycoprotein 1 (AEG1), also called cysteine-rich secretory protein 1 (CRISP1), ... more Acidic epididymal glycoprotein 1 (AEG1), also called cysteine-rich secretory protein 1 (CRISP1), is a member of the CRISP protein family which is characterized by 16 conserved cysteine residues at the C-terminus. The CRISP proteins are expressed in the male genital tract and are thought to be involved in sperm-egg fusion. Therefore, their genes are of interest as candidate genes for inherited male fertility dysfunctions and as putative quantitative trait loci for male fertility traits. In this report, the cloning and DNA sequence of 90 kb of horse genomic DNA from equine chromosome 20q22 containing the complete equine AEG1 gene are described. The equine AEG1 gene consists of eight exons spanning 31 kb. Analysis of equine AEG1 transcripts did not reveal any evidence for alternative splicing, however three different transcription start sites are used. The first transcription start site is located 20 nt downstream of a TATA box motif. Reverse transcription polymerase chain reaction analysis demonstrated that AEG1 is expressed in different parts of the epididymis, whereas it is hardly detectable in the testis. The naturally occurring diversity of the equine AEG1 gene in different horse breeds was investigated and several polymorphisms are reported, including one that affects the amino acid sequence. Finally, sequence comparisons revealed that the intronless equine PGK2 gene for the testis-specific phosphoglycerate kinase is located approximately 39 kb downstream of AEG1. q

Gene, 2002
The cysteine-rich secretory protein (CRISP) family consists of three members called acidic epidid... more The cysteine-rich secretory protein (CRISP) family consists of three members called acidic epididymal glycoprotein 1 (AEG1), AEG2, and testis-specific protein 1 (TPX1), which share 16 conserved cysteine residues at their C-termini. The CRISP proteins are primarily expressed in different sections of the male genital tract and are thought to mediate cell-cell interactions of male germ cells with other cells during sperm maturation or during fertilization. Therefore, their genes are of interest as candidate genes for inherited male fertility dysfunctions and as putative quantitative trait loci for male fertility traits. In this report, the cloning and DNA sequence of 137 kb of horse genomic DNA from equine chromosome 20q22 containing the closely linked equine TPX1 and AEG2 genes are described. The equine TPX1 gene consists of ten exons spanning 18 kb while the AEG2 gene consists of eight exons that are spread over 24 kb. The expression of these two genes was investigated in several tissues by reverse transcription polymerase chain reaction analysis and Western blotting. Comparative genome analysis between horse, human, and mouse indicates that all three CRISP genes are clustered on one chromosomal location, which shows conserved synteny between these species. q

FEBS Letters, 1997
HSP-3 is a member of the cysteine-rich secretory protein (CRISP) family from stallion seminal pla... more HSP-3 is a member of the cysteine-rich secretory protein (CRISP) family from stallion seminal plasma. We report a large-scale purification protocol for native HSP-3. This protein is a non-glycosylated polypeptide chain with a pI of 8^9 and an isotope-averaged molecular mass of 24 987 þ 3 Da. The molecular mass of HSP-3, determined by equilibrium sedimentation, is 26 kDa, showing that the protein exists in solution as a monomer. The concentration of HSP-3 in the seminal plasma of different stallions ranged from 0.3 to 1.3 mg/ml. On average, 0.9^9 million HSP-3 molecules/cell coat the postacrosomal and mid-piece regions of an ejaculated, washed stallion spermatozoon, suggesting a role in sperm physiology. Conformational characterisation of purified HSP-3 was assessed by combination of circular dichroism and Fourier-transform infrared spectroscopies and differential scanning microcalorimetry. Based on secondary structure assignment, HSP-3 may belong to the K K+L L class of proteins. Thermal denaturation of HSP-3 is irreversible and follows a non-two state transition characterised by a T m of 64³C, an enthalpy change of 75 kcal/mol, and a van 't Hoff enthalpy of 184 kcal/mol. Analysis of the spectroscopic and calorimetric data indicates the occurrence of aggregation of denatured HSP-3 molecules and suggests the monomer as the cooperative unfolding unit.

EMBO reports, 2008
Recent advances in understanding b-catenin-independent WNT (non-canonical) signalling suggest an ... more Recent advances in understanding b-catenin-independent WNT (non-canonical) signalling suggest an increasing complexity, raising the question of how individual non-canonical pathways are induced and regulated. Here, we examine whether intracellular signalling components such as b-arrestin (b-arr) and casein kinases 1 and 2 (CK1 and CK2) can contribute to determining signalling specificity in b-catenin-independent WNT signalling to the small GTPase RAC-1. Our findings indicate that b-arr is sufficient and required for WNT/RAC-1 signalling, and that casein kinases act as a switch that prevents the activation of RAC-1 and promotes other non-canonical WNT pathways through the phosphorylation of dishevelled (DVL, xDSH in Xenopus). Thus, our results indicate that the balance between b-arr and CK1/2 determines whether WNT/RAC-1 or other non-canonical WNT pathways are activated.
Uploads
Papers by Alexandra Schambony