Papers by Alessio D'Alessio
Italian journal of anatomy and embryology, 2014
International Journal of Molecular Sciences, Feb 5, 2021
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Cancers
Endothelial cells (ECs) form a simple squamous epithelium, the endothelium, which lines the lumen... more Endothelial cells (ECs) form a simple squamous epithelium, the endothelium, which lines the lumen of all blood vessels and the heart [...]

Cancers
Intercellular communication is a key biological mechanism that is fundamental to maintain tissue ... more Intercellular communication is a key biological mechanism that is fundamental to maintain tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell–cell communication in both physiological and pathological conditions, due to their ability to shuttle a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations of these regulatory effects.

International Journal of Molecular Sciences, 2021
Glioblastoma (GBM), the most commonly occurring primary tumor arising within the central nervous ... more Glioblastoma (GBM), the most commonly occurring primary tumor arising within the central nervous system, is characterized by high invasiveness and poor prognosis. In spite of the improvement in surgical techniques, along with the administration of chemo- and radiation therapy and the incessant investigation in search of prospective therapeutic targets, the local recurrence that frequently occurs within the peritumoral brain tissue makes GBM the most malignant and terminal type of astrocytoma. In the current study, we investigated both GBM and peritumoral tissues obtained from 55 hospitalized patients and the expression of three molecules involved in the onset of resistance/unresponsiveness to chemotherapy: O6-methylguanine methyltransferase (MGMT), breast cancer resistance protein (BCRP1), and A2B5. We propose that the expression of these molecules in the peritumoral tissue might be crucial to promoting the development of early tumorigenic events in the tissue surrounding GBM as wel...

Cancers, 2019
Glioblastoma (GBM) is one of the most aggressive and lethal human brain tumors. At present, GBMs ... more Glioblastoma (GBM) is one of the most aggressive and lethal human brain tumors. At present, GBMs are divided in primary and secondary on the basis of the mutational status of the isocitrate dehydrogenase (IDH) genes. In addition, IDH1 and IDH2 mutations are considered crucial to better define the prognosis. Although primary and secondary GBMs are histologically indistinguishable, they retain distinct genetic alterations that account for different evolution of the tumor. The high invasiveness, the propensity to disperse throughout the brain parenchyma, and the elevated vascularity make these tumors extremely recidivist, resulting in a short patient median survival even after surgical resection and chemoradiotherapy. Furthermore, GBM is considered an immunologically cold tumor. Several studies highlight a highly immunosuppressive tumor microenvironment that promotes recurrence and poor prognosis. Deeper insight into the tumor immune microenvironment, together with the recent discovery...

Oncotarget, 2018
The influence of cell membrane fluidity on cancer progression has been established in different s... more The influence of cell membrane fluidity on cancer progression has been established in different solid tumors. We previously reported that "cancer-associated fibroblasts" (CAFs) induced epithelial-mesenchymal transition and increased cell membrane fluidity and migration in poorly (MCF-7) and highly invasive (MDA-MB-231) breast cancer cells. We also found that the membrane fluidity regulating enzyme stearoyl-CoA desaturase 1 (SCD1) was upregulated in tumor cells co-cultured with CAFs and established its essential role for both intrinsic and CAF-driven tumor cell motility. Here, we further explored the mechanisms involved in the SCD1-based modulation of breast cancer cell migration and investigated the role of the other human SCD isoform, SCD5. We showed that the addition of oleic acid, the main SCD1 product, nullified the inhibitory effects produced on MCF-7 and MDA-MB-231 cell migration by SCD1 depletion (pharmacological or siRNA-based). Conversely, SCD5 seemed not involved in the regulation of cancer cell motility. Interestingly, a clear induction of necrosis was observed as a result of the depletion of SCD5 in MCF-7 cells, where the expression of SCD5 was found to be upregulated by CAFs. The necrotic effect was rescued by a 48-h treatment of cells with oleic acid. These results provide further insights in understanding the role of SCD1 in both intrinsic and CAF-stimulated mammary tumor cell migration, unveiling the metabolic basis of this desaturasetriggered effect. Moreover, our data suggest the ability of CAFs to promote the maintenance of tumor cell survival by the induction of SCD5 levels.

Oncotarget, 2018
In glioblastoma multiforme (GBM), cancer stem cells (CSCs) are thought to be responsible for glio... more In glioblastoma multiforme (GBM), cancer stem cells (CSCs) are thought to be responsible for gliomagenesis, resistance to treatment and recurrence. Unfortunately, the prognosis for GBM remains poor and recurrence frequently occurs in the peritumoral tissue within 2 cm from the tumor edge. In this area, a population of CSCs has been demonstrated which may recapitulate the tumor after surgical resection. In the present study, we aimed to characterize CSCs derived from both peritumoral tissue (PCSCs) and GBM (GCSCs) in order to deepen their significance in GBM development and progression. The stemness of PCSC/GCSC pairs obtained from four human GBM surgical specimens was investigated by comparing the expression of specific stem cell markers such as Nestin, Musashi-1 and SOX2. In addition, the growth rate, the ultrastructural features and the expression of other molecules such as c-Met, pMet and MAP kinases, involved in cell migration/invasion, maintenance of tumor stemness and/or resistance to treatments were evaluated. Since it has been recently demonstrated the involvement of the long noncoding RNAs (lncRNAs) in the progression of gliomas, the expression of H19 lncRNA, as well as of one of its two mature products miR-675-5p was evaluated in neurospheres. Our results show significant differences between GCSCs and PCSCs in terms of proliferation, ultrastructural peculiarities and, at a lower extent, stemness profile. These differences might be important in view of their potential role as a therapeutic target.

Oncotarget, 2016
The formation of new blood vessels represents a crucial event under both physiological and pathol... more The formation of new blood vessels represents a crucial event under both physiological and pathological circumstances. In this study, we evaluated by immunohistochemistry, and/or Western blotting and/or quantitative real time-PCR the expression of HIF1α, HIF2α, VEGF, VEGFR1 and VEGFR2 in surgical glioblastoma multiforme (GBM) and peritumoral tissue samples obtained from 50 patients as well as in cancer stem cells (CSCs) isolated from GBM (GCSCs) and peritumoral tissue (PCSCs) of 5 patients. We also investigated the contribution of both GCSCs and PCSCs on the behavior of endothelial cells (ECs) in vitro. Immunohistochemistry demonstrated the expression of angiogenesis markers in both GBM and peritumoral tissue. In addition, in vitro tube formation assay indicated that both GCSCs and PCSCs stimulate EC proliferation as well as tube-like vessel formation. An increased migration aptitude was mainly observed when ECs were cultured in the presence of GCSCs rather than in the presence of PCSCs. These findings suggest that relevant neoangiogenetic events may occur in GBM. In particular, VEGF/VEGFR co-expression in PCSCs leads to hypothesize the involvement of an autocrine signaling. Moreover, our results suggest that both GCSCs and PCSCs own the skill of activating the "angiogenic switch" and the capability of modulating EC behavior, indicating that both cell types are either responsive to angiogenic stimuli or able to trigger angiogenic response. Together with our previous findings, this study adds a further piece to the challenging puzzle of the characterization of peritumoral tissue and of the definition of its real role in GBM pathophysiology.
Italian journal of anatomy and embryology, 2013
Italian journal of anatomy and embryology, 2012

Journal of Neuropathology & Experimental Neurology, 2016
Characterization of tissue surrounding glioblastoma (GBM) is a focus for translational research b... more Characterization of tissue surrounding glioblastoma (GBM) is a focus for translational research because tumor recurrence invariably occurs in this area. We investigated the expression of the progenitor/ stem cell markers GD3 ganglioside and NG2 proteoglycan in GBM, peritumor tissue (brain adjacent to tumor, BAT) and cancer stem-like cells (CSCs) isolated from GBM (GCSCs) and BAT (PCSCs). GD3 and NG2 immunohistochemistry was performed in paired GBM and BAT specimens from 40 patients. Double-immunofluorescence was carried out to characterize NG2-positive cells of vessel walls. GD3 and NG2 expression was investigated in GCSCs and PCSCs whose tumorigenicity was also evaluated in Scid/bg mice. GD3 and NG2 expression was higher in tumor tissue than in BAT. NG2 decreased as the distance from tumor margin increased, regardless of the tumor cell presence, whereas GD3 correlated with neoplastic infiltration. In BAT, NG2 was coexpressed with a-smooth muscle actin (a-SMA) in pericytes and with nestin in the endothelium. Higher levels of NG2 mRNA and protein were found in GCSCs while GD3 synthase was expressed at similar levels in the 2 CSC populations. PCSCs had lower tumorigenicity than GCSCs. These data suggest the possible involvement of GD3 and NG2 in pre/pro-tumorigenic events occurring in the complex microenvironment of the tissue surrounding GBM.

Plastic and reconstructive surgery, Jan 5, 2016
Adipose tissue (AT) harvested through lipoaspiration is widely exploited in plastic and cosmetic ... more Adipose tissue (AT) harvested through lipoaspiration is widely exploited in plastic and cosmetic surgery, due to its remarkable trophic properties, especially relying on the presence of adipose stem cells (ASCs). The common procedures for ASC isolation are mainly based on tissue fractionation and enzymatic digestion, which require multiple hours of uninterrupted work, unsuitable for direct surgical applications. Recent studies demonstrated the feasibility of isolating adipose stromal cells without the need for enzymatic digestion. These studies reported the processing of the fluid portion of liposucted AT (lipoaspirate fluid, LAF), which contains a significant amount of progenitor cells endowed with plastic and trophic features. Here we introduce a brand new closed device, namely MyStem Evo® kit, which allows non-enzymatic tissue separation and enables the rapid isolation of LAF from human liposucted AT METHODS:: AT was liposucted from 14 donors, split into aliquots, and alternative...

British journal of cancer, Jan 16, 2015
Despite the recognised contribution of the stroma to breast cancer development and progression, t... more Despite the recognised contribution of the stroma to breast cancer development and progression, the effective targeting of the tumor microenvironment remains a challenge to be addressed. We previously reported that normal fibroblasts (NFs) and, notably, breast cancer-associated fibroblasts (CAFs) induced epithelial-to-mesenchymal transition and increases in cell membrane fluidity and migration in well- (MCF-7) and poorly-differentiated (MDA-MB-231) breast cancer cells. This study was designed to better define the role played, especially by CAFs, in promoting breast tumor cell migration. Fibroblast/breast cancer cell co-cultures were set up to investigate the influence of NFs and CAFs on gene and protein expression of Stearoyl-CoA desaturase 1 (SCD1), the main enzyme regulating membrane fluidity, as well as on the protein level and activity of its transcription factor, the sterol regulatory element-binding protein 1 (SREBP1), in MCF-7 and MDA-MB-231 cells. To assess the role of SREBP...
International Journal of Cell Biology, 2014

Cell Death and Differentiation, 2000
Basic Fibroblast Growth Factor (FGF-2) is a growth and survival factor and represents one of the ... more Basic Fibroblast Growth Factor (FGF-2) is a growth and survival factor and represents one of the most potent differentiation agents of vascular system. In the present study we describe that adenoviral oncoprotein E1A regulates FGF-2 production and determines the acquisition of a proangiogenic phenotype in primary bovine aortic endothelial cells (BAEC). Following their transfection, wild type E1A proteins 12S and 13S (wtE1A) stimulated BAEC to differentiate on reconstituted basement membrane matrix (Matrigel). This outcome was paralleled by invasion and migration enhancement in wtE1A-transfected cells. This stimulating effect was absent with the E1A mutant dl646N. Accordingly, zymography and RT ± PCR analyses showed that matrix metalloproteinase-9 protein-and mRNA-levels increased following wtE1A transfection. Interestingly, wtE1A-transfected BAEC showed FGF-2 mRNA-and protein-levels higher than controls. Further, FGF-2 neutralization reduced the amount of MMP-9 released in the supernatant of E1A-transfected cells and strongly inhibited BAEC differentiation, thus suggesting that wtE1A activates BAEC by a mechanism, at least partially, dependent on a FGF-2 autocrine/paracrine loop. Cell Death and Differentiation (2000) 7, 292 ± 301.

American Journal of Pathology, Sep 1, 2009
In this study, we examined the mechanisms that contribute to lipopolysaccharide (LPS)-induced dea... more In this study, we examined the mechanisms that contribute to lipopolysaccharide (LPS)-induced death responses in cultured human umbilical vein endothelial cells (HUVECs). In the presence of the protein synthesis inhibitor cycloheximide, LPS primarily induces caspase-dependent apoptotic cell death of HUVECs, which is blocked by siRNA-mediated knockdown of myeloid differentiation factor 88 adaptor protein but not of Toll-like receptor-associated interferon-inducing factor. Knockdown of Fas-associated death domain protein (FADD) by either siRNA or overexpression of a truncated version of FADD that lacks the N-terminal death effector domain (FADD DN ) increases the sensitivity of HUVECs to LPS plus cycloheximidemediated death. However, based on the use of proteinase inhibitors, cell death changes from being principally caspase-dependent to being principally cathepsin B (Cat B)-dependent. Knockdown of cellular FLICE inhibitory protein potentiates the caspasedependent pathway but does not activate the Cat Bdependent death response. Knockdown of either myeloid differentiation factor 88 or Toll-like receptorassociated interferon-inducing factor expression does not affect the LPS-triggered Cat B death response in FADD-deficient HUVECs. Finally, in the presence of either the phosphatidylinositol 3 kinase inhibitor LY294002 or the inflammatory cytokine interferon-␥, LPS activates both caspase-and Cat B-dependent death pathways. We conclude that LPS can activate a Cat-Bdependent programmed death response in human endothelial cells that is independent of both myeloid differentiation factor 88 and Toll-like receptor-associated interferon-inducing factor, is blocked by both FADD and phosphatidylinositol 3 kinase, and is potentiated by interferon-␥.
BioMed Research International, 2015

The Journal of Immunology, 2006
Inflammation is associated with the pathogenesis of coronary atherosclerosis, although the mechan... more Inflammation is associated with the pathogenesis of coronary atherosclerosis, although the mechanisms remain unclear. We investigated whether cytokine secretion by innate immune responses could contribute to the production of proarteriosclerotic Th1-type cytokines in human coronary atherosclerosis. Cytokines were measured by ELISA in the plasma of patients with coronary atherosclerosis undergoing cardiac catheterization. IL-18 was detected in all subjects, whereas a subset of patients demonstrated a coordinated induction of other IFN-γ-related cytokines. Specifically, elevated plasma levels of IL-12 correlated with that of IFN-γ and IFN-γ-inducible chemokines, defining an IFN-γ axis that was activated independently of IL-6 or C-reactive protein. Systemic inflammation triggered by cardiopulmonary bypass increased plasma levels of the IFN-γ axis, but not that of IL-18. Activation of the IFN-γ axis was not associated with acute coronary syndromes, but portended increased morbidity and ...

Journal of Biological Chemistry, 2004
Previously we have shown that ASK-interacting protein 1 (AIP1, also known as DAB2IP), a novel mem... more Previously we have shown that ASK-interacting protein 1 (AIP1, also known as DAB2IP), a novel member of the Ras-GAP protein family, mediates TNF-induced activation of ASK1-JNK signaling pathway. However, the mechanism by which TNF signaling is coupled to AIP1 is not known. Here we show that AIP1 is localized on the plasma membrane in resting endothelial cells (EC) in a complex with TNFR1. TNF binding induces release of AIP1 from TNFR1, resulting in cytoplasmic translocation and concomitant formation of an intracellular signaling complex comprised of TRADD, RIP1, TRAF2, and AIPl. A proline-rich region (amino acids 796 -807) is critical for maintaining AIP1 in a closed form, which associates with a region of TNFR1 distinct from the death domain, the site of TNFR1 association with TRADD. An AIP1 mutant with deletion of this proline-rich region constitutively binds to TRAF2 and ASK1. A PERIOD-like domain (amino acids 591-719) of AIP1 binds to the intact RING finger of TRAF2, and specifically enhances TRAF2-induced ASK1 activation. At the same time, the binding of AIP1 to TRAF2 inhibits TNF-induced IKK-NF-B signaling. Taken together, our data suggest that AIP1 is a novel transducer in TNF-induced TRAF2-dependent activation of ASK1 that mediates a balance between JNK versus NF-B signaling.
Uploads
Papers by Alessio D'Alessio