Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, co... more Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to bio...
The plasma membrane and cytoskeleton of living cells are closely coupled dynamical systems. Inter... more The plasma membrane and cytoskeleton of living cells are closely coupled dynamical systems. Internal cytoskeletal elements such as actin filaments and microtubules continually exert forces on the membrane, resulting in the formation of membrane protrusions. In this paper we investigate the interplay between the shape of a cell distorted by pushing and pulling forces generated by microtubules and the resulting rearrangement of the microtubule network. From analytical calculations, we find that two microtubules that deform the vesicle can both attract or repel each other, depending on their angular separations and the direction of the imposed forces. We also show how the existence of attractive interactions between multiple microtubules can be deduced analytically, and further explore general interactions through Monte Carlo simulations. Our results suggest that the commonly reported parallel structures of microtubules in both biological and artificial systems can be a natural consequ...
Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, co... more Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria - via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces - results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to bio...
Physical interactions on membranes with anisotropic shapes can be exploited by cells to drive mac... more Physical interactions on membranes with anisotropic shapes can be exploited by cells to drive macromolecules to preferred regions of cellular or intracellular membranes.
We analytically study membrane mediated interactions between inclusions embedded in a tubular mem... more We analytically study membrane mediated interactions between inclusions embedded in a tubular membrane. We model inclusions as constraints coupled to the curvature tensor of the membrane tube. First, as special test cases, we analyze the interaction between ring and rod shaped inclusions. Using Monte Carlo simulations, we further show how point-like inclusions interact to form linear aggregates. Our results reveal that depending on the hard-core radius of the inclusions, they arrange into either lines or rings to globally minimize the curvature energy of the membrane.
The interplay of membrane proteins is vital for many biological processes, such as cellular trans... more The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (-3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interact...
Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, co... more Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to bio...
The plasma membrane and cytoskeleton of living cells are closely coupled dynamical systems. Inter... more The plasma membrane and cytoskeleton of living cells are closely coupled dynamical systems. Internal cytoskeletal elements such as actin filaments and microtubules continually exert forces on the membrane, resulting in the formation of membrane protrusions. In this paper we investigate the interplay between the shape of a cell distorted by pushing and pulling forces generated by microtubules and the resulting rearrangement of the microtubule network. From analytical calculations, we find that two microtubules that deform the vesicle can both attract or repel each other, depending on their angular separations and the direction of the imposed forces. We also show how the existence of attractive interactions between multiple microtubules can be deduced analytically, and further explore general interactions through Monte Carlo simulations. Our results suggest that the commonly reported parallel structures of microtubules in both biological and artificial systems can be a natural consequ...
Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, co... more Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria - via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces - results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to bio...
Physical interactions on membranes with anisotropic shapes can be exploited by cells to drive mac... more Physical interactions on membranes with anisotropic shapes can be exploited by cells to drive macromolecules to preferred regions of cellular or intracellular membranes.
We analytically study membrane mediated interactions between inclusions embedded in a tubular mem... more We analytically study membrane mediated interactions between inclusions embedded in a tubular membrane. We model inclusions as constraints coupled to the curvature tensor of the membrane tube. First, as special test cases, we analyze the interaction between ring and rod shaped inclusions. Using Monte Carlo simulations, we further show how point-like inclusions interact to form linear aggregates. Our results reveal that depending on the hard-core radius of the inclusions, they arrange into either lines or rings to globally minimize the curvature energy of the membrane.
The interplay of membrane proteins is vital for many biological processes, such as cellular trans... more The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (-3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interact...
Uploads
Papers by Afshin Vahid