Establishment of cell-cell adhesion is crucial in embryonic development as well as within the ste... more Establishment of cell-cell adhesion is crucial in embryonic development as well as within the stem cell niches of an adult. Adhesion between macrophages and erythroblasts is required for the formation of erythroblastic islands, specialized niches where erythroblasts proliferate and differentiate to produce red blood cells throughout life. The Eph family is the largest known family of receptor tyrosine kinases (RTKs) and controls cell adhesion, migration, invasion and morphology by modulating integrin and adhesion molecule activity and by modifying the actin cytoskeleton. Here, we identify the proteoglycan agrin as a novel regulator of Eph receptor signaling and characterize a novel mechanism controlling cell-cell adhesion and red cell development within the erythroid niche. We demonstrate that agrin induces clustering and activation of EphB1 receptors on developing erythroblasts, leading to the activation of α5β1 integrins. In agreement, agrin knockout mice display severe anemia owing to defective adhesion to macrophages and impaired maturation of erythroid cells. These results position agrin-EphB1 as a novel key signaling couple regulating cell adhesion and erythropoiesis.
Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view ... more Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the antiangiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.
Mesenchymal stem cells (MSCs; also called mesenchymal stromal cells) have received much attention... more Mesenchymal stem cells (MSCs; also called mesenchymal stromal cells) have received much attention during the last two decades, at first because of their regeneration capacity and poor immunogenicity and, more recently, because of their proved immunomodulatory function. Consequently, the number of studies addressing MSC biology and their capacity to treat a broad range of human diseases at the preclinical and clinical level has grown exponentially, with often confusing and conflicting results. The use of poorly defined cell preparations and experimental models, many of them in vitro, has added to such confusion. In this review, we identify what in our opinion remain the main open questions on MSC biology and we attempt to distinguish the facts from the myths concerning endogenous and therapeutic MSC.
Organization of immune responses requires exchange of information between cells. This is achieved... more Organization of immune responses requires exchange of information between cells. This is achieved through either direct cell-cell contacts and establishment of temporary synapses or the release of soluble factors, such as cytokines and chemokines. Here we show a novel form of cell-to-cell communication based on adenosine triphosphate (ATP). ATP released by stimulated T cells induces P2X4/P2X7-mediated calcium waves in the neighboring lymphocytes. Our data obtained in lymph node slices suggest that, during T-cell priming, ATP acts as a paracrine messenger to reduce the motility of lymphocytes and that this may be relevant to allow optimal tissue scanning by T cells.
Mice that express influenza hemagglutinin under control of the rat insulin promoter (INS-HA) as w... more Mice that express influenza hemagglutinin under control of the rat insulin promoter (INS-HA) as well as a class II major histocompatibility complex (MHC)restricted HA-specific transgenic TCR (TCR-HA), develop early insulitis with huge infiltrates, but progress late and irregularly to diabetes. Initially, in these mice, INS-HA modulates the reactivity of antigenspecific lymphocytes, such that outside the pancreas they do not cause lethal shock like their naive counterparts in single transgenic TCR-HA mice, when stimulated with high doses of antigen. Inside the pancreas, the antigen-specific cells do not initially attack the islet cells, and produce some IFN-γ as well as IL-10 and IL-4. Spontaneous progression to diabetes, which can be accelerated by cyclophosphamide injection, is accompanied by a 10-fold increase in IFN-γ and a 3-fold decrease in IL-10 and IL-4 production by the locally residing antigen-specific T cells. Also, total islets from non-diabetic mice contain more TNF-α, compared with diabetic mice. This scenario is consistent with the view that β cell destruction depends upon the increased production of certain pro-inflammatory cytokines by infiltrating T cells. Our inability to detect Fas expression on β cells, but not on lymphoid cells, in diabetic and non-diabetic mice, puts some constraints on the role of Fas in β cell destruction.
T cell receptor agonists can induce the differentiation of regulatory T (T R) cells. We report he... more T cell receptor agonists can induce the differentiation of regulatory T (T R) cells. We report here that the immunoglobulin κ-controlled expression of an agonist in different cell types correlated with the phenotype of the generated T R cells. We found that aberrant expression on thymic stroma yielded predominantly CD4 + CD25 + T R cells, which-under physiological conditions-may be induced by ectopically expressed organ-specific antigens and thus prevent organ-specific autoimmunity. Expression of the agonist antigen by nonactivated hematopoietic cells produced mostly CD4 + CD25-T R cells. This subset can be derived from mature monospecific T cells without "tutoring" by other T cells and can be generated in the absence of a functioning thymus. Suppression of CD4 + T cell proliferative responses by both CD25 + and CD25subsets was interleukin 10 (IL-10)-independent and was overcome by IL-2.These data suggest that distinct pathways can be exploited to interfere with unwanted immune responses.
Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-te... more Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4 + T-cell activation w...
Immune regulation plays an important role in the establishment and maintenance of self-tolerance.... more Immune regulation plays an important role in the establishment and maintenance of self-tolerance. Nevertheless, it has been difficult to conclude whether regulation is Ag specific because studies have focused on polyclonal populations of regulatory T cells. We have used in this study a murine transgenic model that generates self-reactive, regulatory T cells of known Ag specificity to determine their capacity to suppress naive T cells specific for other Ags. We show that these regulatory cells can regulate the responses of naive T cells with the same TCR specificity, but do not inhibit T cell proliferation or differentiation of naive T cells specific for other Ags. These results demonstrate that immune regulation may be more Ag specific than previously proposed.
We have previously demonstrated that recombinant adeno-associated virus vectors expressing the in... more We have previously demonstrated that recombinant adeno-associated virus vectors expressing the influenza virus hemagglutinin (rAAV-HA) in skeletal muscle results in T-cell priming and muscle fiber destruction due to cross-presentation of HA by dendritic cells (DC). Based on controversial observations concerning the stability of non-self proteins expressed from rAAV vectors it is important to understand the factors influencing cross-presentation of transgene products following rAAV mediated gene transfer, in order to be able to use this vector safely in the clinic. In order to understand the factors influencing in vivo cross-presentation of non-self proteins, we have retargeted the immunogenic lacZ protein in the context of rAAV from the cytoplasm to the cell surface and studied the activation of LacZ specific immune responses following intramuscular mediated gene transfer. In addition, using tools available for studying in vitro HA-specific T-cell activation, our aim was to identify the cell types involved in class I and class II restricted cross-presentation as well as the nature of the cross-presented material. By retargeting the lacZ protein in the context of rAAV to the cell membrane, we found that one of the factors influencing the efficiency of cross-presentation of non-self antigens is the localization of the transgene product within the target cells. Following rAAV-LacZ mediated gene transfer to the muscle we demonstrated that the membrane-bound form of LacZ resulted in target cell destruction, which is in stark contrast to the stability observed with rAAV-LacZ vectors expressing the cytoplasmic form of LacZ. Using an in vitro assay, we were able to show that dendritic cells (DC) in addition to B-cells cross-presented HA to class II restricted T-cells whereas only the former were able to activate class I restricted CD8+ T-cells. High-dose antigens were needed for efficient class I restricted T-cell priming, whereas class II restricted T-cells were activated by less antigen. The present results indicate that immune responses to non-self antigens expressed from rAAV vectors depend on the accessibility of such antigens to different local antigen-presenting cells.
Establishment of antigen-specific tolerance among mature T cells has been a long debated, yet poo... more Establishment of antigen-specific tolerance among mature T cells has been a long debated, yet poorly understood issue. In this study we have used transgenic mice bearing a class II–restricted TCR specific for the hemmagglutinin of the influenza virus in order to test the behavior of CD4+ T cells upon exposure to antigen in different forms and doses. We first studied the fate of T cells expressing the transgenic TCR (6.5) in double transgenic mice where HA was expressed as a self antigen by hemapoietic cells. In these mice, we found some mature T cells in periphery that had escaped thymic deletion and that showed signs of activation but which were anergic. Mature CD4+6.5+ cells that were transferred into antigen-containing recipients went through an initial phase of expansion after which most cells were deleted and those remaining became unresponsive, as previously described for CD8+ cells. Inducing tolerance in CD4+6.5+ cells in situ in single transgenic mice proved a difficult task...
Establishment of cell-cell adhesion is crucial in embryonic development as well as within the ste... more Establishment of cell-cell adhesion is crucial in embryonic development as well as within the stem cell niches of an adult. Adhesion between macrophages and erythroblasts is required for the formation of erythroblastic islands, specialized niches where erythroblasts proliferate and differentiate to produce red blood cells throughout life. The Eph family is the largest known family of receptor tyrosine kinases (RTKs) and controls cell adhesion, migration, invasion and morphology by modulating integrin and adhesion molecule activity and by modifying the actin cytoskeleton. Here, we identify the proteoglycan agrin as a novel regulator of Eph receptor signaling and characterize a novel mechanism controlling cell-cell adhesion and red cell development within the erythroid niche. We demonstrate that agrin induces clustering and activation of EphB1 receptors on developing erythroblasts, leading to the activation of α5β1 integrins. In agreement, agrin knockout mice display severe anemia owing to defective adhesion to macrophages and impaired maturation of erythroid cells. These results position agrin-EphB1 as a novel key signaling couple regulating cell adhesion and erythropoiesis.
Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view ... more Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the antiangiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.
Mesenchymal stem cells (MSCs; also called mesenchymal stromal cells) have received much attention... more Mesenchymal stem cells (MSCs; also called mesenchymal stromal cells) have received much attention during the last two decades, at first because of their regeneration capacity and poor immunogenicity and, more recently, because of their proved immunomodulatory function. Consequently, the number of studies addressing MSC biology and their capacity to treat a broad range of human diseases at the preclinical and clinical level has grown exponentially, with often confusing and conflicting results. The use of poorly defined cell preparations and experimental models, many of them in vitro, has added to such confusion. In this review, we identify what in our opinion remain the main open questions on MSC biology and we attempt to distinguish the facts from the myths concerning endogenous and therapeutic MSC.
Organization of immune responses requires exchange of information between cells. This is achieved... more Organization of immune responses requires exchange of information between cells. This is achieved through either direct cell-cell contacts and establishment of temporary synapses or the release of soluble factors, such as cytokines and chemokines. Here we show a novel form of cell-to-cell communication based on adenosine triphosphate (ATP). ATP released by stimulated T cells induces P2X4/P2X7-mediated calcium waves in the neighboring lymphocytes. Our data obtained in lymph node slices suggest that, during T-cell priming, ATP acts as a paracrine messenger to reduce the motility of lymphocytes and that this may be relevant to allow optimal tissue scanning by T cells.
Mice that express influenza hemagglutinin under control of the rat insulin promoter (INS-HA) as w... more Mice that express influenza hemagglutinin under control of the rat insulin promoter (INS-HA) as well as a class II major histocompatibility complex (MHC)restricted HA-specific transgenic TCR (TCR-HA), develop early insulitis with huge infiltrates, but progress late and irregularly to diabetes. Initially, in these mice, INS-HA modulates the reactivity of antigenspecific lymphocytes, such that outside the pancreas they do not cause lethal shock like their naive counterparts in single transgenic TCR-HA mice, when stimulated with high doses of antigen. Inside the pancreas, the antigen-specific cells do not initially attack the islet cells, and produce some IFN-γ as well as IL-10 and IL-4. Spontaneous progression to diabetes, which can be accelerated by cyclophosphamide injection, is accompanied by a 10-fold increase in IFN-γ and a 3-fold decrease in IL-10 and IL-4 production by the locally residing antigen-specific T cells. Also, total islets from non-diabetic mice contain more TNF-α, compared with diabetic mice. This scenario is consistent with the view that β cell destruction depends upon the increased production of certain pro-inflammatory cytokines by infiltrating T cells. Our inability to detect Fas expression on β cells, but not on lymphoid cells, in diabetic and non-diabetic mice, puts some constraints on the role of Fas in β cell destruction.
T cell receptor agonists can induce the differentiation of regulatory T (T R) cells. We report he... more T cell receptor agonists can induce the differentiation of regulatory T (T R) cells. We report here that the immunoglobulin κ-controlled expression of an agonist in different cell types correlated with the phenotype of the generated T R cells. We found that aberrant expression on thymic stroma yielded predominantly CD4 + CD25 + T R cells, which-under physiological conditions-may be induced by ectopically expressed organ-specific antigens and thus prevent organ-specific autoimmunity. Expression of the agonist antigen by nonactivated hematopoietic cells produced mostly CD4 + CD25-T R cells. This subset can be derived from mature monospecific T cells without "tutoring" by other T cells and can be generated in the absence of a functioning thymus. Suppression of CD4 + T cell proliferative responses by both CD25 + and CD25subsets was interleukin 10 (IL-10)-independent and was overcome by IL-2.These data suggest that distinct pathways can be exploited to interfere with unwanted immune responses.
Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-te... more Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4 + T-cell activation w...
Immune regulation plays an important role in the establishment and maintenance of self-tolerance.... more Immune regulation plays an important role in the establishment and maintenance of self-tolerance. Nevertheless, it has been difficult to conclude whether regulation is Ag specific because studies have focused on polyclonal populations of regulatory T cells. We have used in this study a murine transgenic model that generates self-reactive, regulatory T cells of known Ag specificity to determine their capacity to suppress naive T cells specific for other Ags. We show that these regulatory cells can regulate the responses of naive T cells with the same TCR specificity, but do not inhibit T cell proliferation or differentiation of naive T cells specific for other Ags. These results demonstrate that immune regulation may be more Ag specific than previously proposed.
We have previously demonstrated that recombinant adeno-associated virus vectors expressing the in... more We have previously demonstrated that recombinant adeno-associated virus vectors expressing the influenza virus hemagglutinin (rAAV-HA) in skeletal muscle results in T-cell priming and muscle fiber destruction due to cross-presentation of HA by dendritic cells (DC). Based on controversial observations concerning the stability of non-self proteins expressed from rAAV vectors it is important to understand the factors influencing cross-presentation of transgene products following rAAV mediated gene transfer, in order to be able to use this vector safely in the clinic. In order to understand the factors influencing in vivo cross-presentation of non-self proteins, we have retargeted the immunogenic lacZ protein in the context of rAAV from the cytoplasm to the cell surface and studied the activation of LacZ specific immune responses following intramuscular mediated gene transfer. In addition, using tools available for studying in vitro HA-specific T-cell activation, our aim was to identify the cell types involved in class I and class II restricted cross-presentation as well as the nature of the cross-presented material. By retargeting the lacZ protein in the context of rAAV to the cell membrane, we found that one of the factors influencing the efficiency of cross-presentation of non-self antigens is the localization of the transgene product within the target cells. Following rAAV-LacZ mediated gene transfer to the muscle we demonstrated that the membrane-bound form of LacZ resulted in target cell destruction, which is in stark contrast to the stability observed with rAAV-LacZ vectors expressing the cytoplasmic form of LacZ. Using an in vitro assay, we were able to show that dendritic cells (DC) in addition to B-cells cross-presented HA to class II restricted T-cells whereas only the former were able to activate class I restricted CD8+ T-cells. High-dose antigens were needed for efficient class I restricted T-cell priming, whereas class II restricted T-cells were activated by less antigen. The present results indicate that immune responses to non-self antigens expressed from rAAV vectors depend on the accessibility of such antigens to different local antigen-presenting cells.
Establishment of antigen-specific tolerance among mature T cells has been a long debated, yet poo... more Establishment of antigen-specific tolerance among mature T cells has been a long debated, yet poorly understood issue. In this study we have used transgenic mice bearing a class II–restricted TCR specific for the hemmagglutinin of the influenza virus in order to test the behavior of CD4+ T cells upon exposure to antigen in different forms and doses. We first studied the fate of T cells expressing the transgenic TCR (6.5) in double transgenic mice where HA was expressed as a self antigen by hemapoietic cells. In these mice, we found some mature T cells in periphery that had escaped thymic deletion and that showed signs of activation but which were anergic. Mature CD4+6.5+ cells that were transferred into antigen-containing recipients went through an initial phase of expansion after which most cells were deleted and those remaining became unresponsive, as previously described for CD8+ cells. Inducing tolerance in CD4+6.5+ cells in situ in single transgenic mice proved a difficult task...
Uploads
Papers by A. Sarukhan