The work examines the effect of controlled shot peening (CSP), laser shock peening (LSP) and ultr... more The work examines the effect of controlled shot peening (CSP), laser shock peening (LSP) and ultrasonic impact treatment (UIT) on the fatigue behavior of 2024-T351 aluminum alloy. The testing methodology has been designed to extract information regarding specific products of the treatments and their individual affect on fatigue damage. The work concludes that all three surface treatments improve the fatigue resistance of the material with the LSP covering the areas of safe-life and damage tolerance, the control shot peening can only benefit the area of short crack growth while the UIT proved to benefit both the short and long crack growth.
The effects of temper condition and corrosion on the fatigue behavior of a laser beam welded Al-C... more The effects of temper condition and corrosion on the fatigue behavior of a laser beam welded Al-Cu-Mg-Ag alloy (2139) have been investigated. Natural aging (T3 temper) and artificial aging (T8 temper) have been applied prior to welding. Corrosion testing has been performed by exposing the welded specimens to a salt spray medium for 720 h. Aging influences the corrosion behavior of laser welds. In the T3 temper, corrosion attack is in the form of pitting in the weld area, while in the T8 temper corrosion is in the form of pitting and intergranular corrosion in the base metal. In the latter case corrosion is attributed to the presence of grain boundary precipitates. Corrosion degrades the fatigue behavior of 2139 welds. The degradation is equal for both the T3 and T8 tempers and for the corrosion exposure selected in this study corresponds to a 52% reduction in fatigue limit. In both cases fatigue crack initiation is associated with corrosion pits, which act as stress raisers. In the T3 temper, the fatigue crack initiation site is at the weld metal/heat affected zone interface, while for the T8 temper the initiation site is at the base metal. Fatigue crack initiation in uncorroded 2139 welds occurs at the weld toe at the root side, the weld reinforcement playing a principal role as stress concentration site. The fatigue crack propagates through the partially melted zone and the weld metal in all cases. The findings in this paper present useful information for the selection of appropriate heat treatment conditions, to facilitate control of the corrosion behavior in aluminium welds, which is of great significance for their fatigue performance.
In the present work the effect of residual stresses due to laser welding on the Stress Intensity ... more In the present work the effect of residual stresses due to laser welding on the Stress Intensity Factors (SIFs) of cracks developing nearby the welded area is studied. The simulation of the welding process and the calculation of SIFs on the cracked structure are performed using an explicit and an implicit Finite Element code, respectively. The developed residual stresses due to the welding of two flat plates by laser are calculated first, using a thermo-mechanical transient analysis. Consequently, a linear elastic analysis is applied on the calculation of SIFs at the crack tips. The calculated results of the welding simulation are verified by comparing the computed angular distortions to the corresponding experimental values. As SIF values cannot be experimentally determined due to the existence of the residual stress field, the verification of the fracture mechanics analysis is performed through comparisons between computed and experimental crack opening displacement (COD) values. ...
The effects of temper condition and corrosion on the fatigue behavior of a laser beam welded Al-C... more The effects of temper condition and corrosion on the fatigue behavior of a laser beam welded Al-Cu-Mg-Ag alloy (2139) have been investigated. Natural aging (T3 temper) and artificial aging (T8 temper) have been applied prior to welding. Corrosion testing has been performed by exposing the welded specimens to a salt spray medium for 720 h. Aging influences the corrosion behavior of laser welds. In the T3 temper, corrosion attack is in the form of pitting in the weld area, while in the T8 temper corrosion is in the form of pitting and intergranular corrosion in the base metal. In the latter case corrosion is attributed to the presence of grain boundary precipitates. Corrosion degrades the fatigue behavior of 2139 welds. The degradation is equal for both the T3 and T8 tempers and for the corrosion exposure selected in this study corresponds to a 52% reduction in fatigue limit. In both cases fatigue crack initiation is associated with corrosion pits, which act as stress raisers. In the T3 temper, the fatigue crack initiation site is at the weld metal/heat affected zone interface, while for the T8 temper the initiation site is at the base metal. Fatigue crack initiation in uncorroded 2139 welds occurs at the weld toe at the root side, the weld reinforcement playing a principal role as stress concentration site. The fatigue crack propagates through the partially melted zone and the weld metal in all cases. The findings in this paper present useful information for the selection of appropriate heat treatment conditions, to facilitate control of the corrosion behavior in aluminium welds, which is of great significance for their fatigue performance.
Laser welding is increasingly used for the fabrication of lightweight and cost-effective integral... more Laser welding is increasingly used for the fabrication of lightweight and cost-effective integral stiffened panels in modern civil aircraft. As these structures age in service, the issue of the effect of corrosion on their damage tolerance requires attention. In this work, laboratory data on the influence of salt fog corrosion on the fatigue behavior of cladded 6156 T4 aluminum alloy laser welded specimens are presented. The experimental investigation was performed on 6156 T4 laser butt welded sheets. Prior to fatigue testing the welded joints were exposed to laboratory salt fog corrosion exposure for 720 h. The results showed that the clad layer offers sufficient corrosion protection both on base metal and the weld. Fatigue testing was followed by standard metallographic analysis in order to identify fatigue crack initiation sites. Crack initiation is located in all welded samples near the weld reinforcement which induces a significant stress concentration. Localized corrosion attack of the clad layer, in the form of pitting corrosion, creates an additional stress concentration which accelerates crack initiation leading to shorter fatigue life relative to the uncorroded samples. The potency of small corrosion pits to act as stress concentration sites has been assessed analytically. The above results indicate that despite the general corrosion protection offered by the clad layer, the localized attack described above leads to inferior fatigue performance, a fact that should be taken under consideration in the design and maintenance of these structures.
This work aims to provide extensive experimental evidence that reinforce the fact that block over... more This work aims to provide extensive experimental evidence that reinforce the fact that block overloading can produce phenomena of either crack growth acceleration or retardation depending on its magnitude, duration and the fatigue damage stage characterising its onset. Compared to the majority of similar experimental works in the field, the investigation is based on the classification of identical overloading conditions
Fatigue <html_ent glyph="@amp;" ascii="&"/> Fracture of Engineering Materials and Structures, 2005
The present work aims to provide evidence of corrosion-induced hydrogen embrittlement of the airc... more The present work aims to provide evidence of corrosion-induced hydrogen embrittlement of the aircraft aluminium alloy 2024. An extensive experimental investigation involving metallographic and fractographic analyses as well as mechanical testing was performed. The corrosion exposure led to a moderate reduction in yield and ultimate tensile stress and a dramatic reduction in tensile ductility. Metallographic investigation of the specimens revealed a hydrogen-rich embrittled zone just below the corrosion layer. Furthermore, fractographic analyses showed an intergranular fracture at the specimen surface followed by a zone of quasi-cleavage fracture and further below an entirely ductile fracture. Mechanical removal of the corroded layers restored the yield and ultimate stress almost to their initial values but not the tensile ductility. The tensile ductility was restored to the level of the uncorroded material only after heat treatment at 495 • C. Measurement of hydrogen evolution with temperature showed that by heating the corroded alloy at 495 • C, the trapped hydrogen is released. c 2005 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 28, 565-574 565
The fatigue crack growth behavior under constant amplitude and under single overload of 2024 alum... more The fatigue crack growth behavior under constant amplitude and under single overload of 2024 aluminum alloy in sheet and plate product form has been investigated. Constant amplitude fatigue crack growth tests showed superior crack growth resistance of the plate attributed to a pronounced roughness induced crack closure as a result of the coarse and elongated grain structure. Crack growth tests with single overload showed that the retardation effect caused by the overload is not primarily influenced by roughness crack closure at the crack path. In this case, the sheet material with lower yield strength revealed a higher retardation effect than the plate material. The observed crack growth behavior has been simulated with the LTSM-F model, which accounts for retardation of crack growth after an overload due to material strain hardening at the crack front. Dissimilar strain hardening at the crack tip due to different yield strength for the sheet and plate has been considered by means of strength gradients inside the overload plastic zone. The analytical results confirmed the observed material crack growth trends.
... Kermanidis a , R. Akid b , CA Rodopoulos b and Sp.G. Pantelakis a , Corresponding Author Cont... more ... Kermanidis a , R. Akid b , CA Rodopoulos b and Sp.G. Pantelakis a , Corresponding Author Contact Information , E-mail The Corresponding Author. ... The 0.01 h mark was used to facilitate the use of the logarithmic scale and represents zero time exposure with values for the ...
The work examines the effect of controlled shot peening (CSP), laser shock peening (LSP) and ultr... more The work examines the effect of controlled shot peening (CSP), laser shock peening (LSP) and ultrasonic impact treatment (UIT) on the fatigue behavior of 2024-T351 aluminum alloy. The testing methodology has been designed to extract information regarding specific products of the treatments and their individual affect on fatigue damage. The work concludes that all three surface treatments improve the fatigue resistance of the material with the LSP covering the areas of safe-life and damage tolerance, the control shot peening can only benefit the area of short crack growth while the UIT proved to benefit both the short and long crack growth.
The effects of temper condition and corrosion on the fatigue behavior of a laser beam welded Al-C... more The effects of temper condition and corrosion on the fatigue behavior of a laser beam welded Al-Cu-Mg-Ag alloy (2139) have been investigated. Natural aging (T3 temper) and artificial aging (T8 temper) have been applied prior to welding. Corrosion testing has been performed by exposing the welded specimens to a salt spray medium for 720 h. Aging influences the corrosion behavior of laser welds. In the T3 temper, corrosion attack is in the form of pitting in the weld area, while in the T8 temper corrosion is in the form of pitting and intergranular corrosion in the base metal. In the latter case corrosion is attributed to the presence of grain boundary precipitates. Corrosion degrades the fatigue behavior of 2139 welds. The degradation is equal for both the T3 and T8 tempers and for the corrosion exposure selected in this study corresponds to a 52% reduction in fatigue limit. In both cases fatigue crack initiation is associated with corrosion pits, which act as stress raisers. In the T3 temper, the fatigue crack initiation site is at the weld metal/heat affected zone interface, while for the T8 temper the initiation site is at the base metal. Fatigue crack initiation in uncorroded 2139 welds occurs at the weld toe at the root side, the weld reinforcement playing a principal role as stress concentration site. The fatigue crack propagates through the partially melted zone and the weld metal in all cases. The findings in this paper present useful information for the selection of appropriate heat treatment conditions, to facilitate control of the corrosion behavior in aluminium welds, which is of great significance for their fatigue performance.
In the present work the effect of residual stresses due to laser welding on the Stress Intensity ... more In the present work the effect of residual stresses due to laser welding on the Stress Intensity Factors (SIFs) of cracks developing nearby the welded area is studied. The simulation of the welding process and the calculation of SIFs on the cracked structure are performed using an explicit and an implicit Finite Element code, respectively. The developed residual stresses due to the welding of two flat plates by laser are calculated first, using a thermo-mechanical transient analysis. Consequently, a linear elastic analysis is applied on the calculation of SIFs at the crack tips. The calculated results of the welding simulation are verified by comparing the computed angular distortions to the corresponding experimental values. As SIF values cannot be experimentally determined due to the existence of the residual stress field, the verification of the fracture mechanics analysis is performed through comparisons between computed and experimental crack opening displacement (COD) values. ...
The effects of temper condition and corrosion on the fatigue behavior of a laser beam welded Al-C... more The effects of temper condition and corrosion on the fatigue behavior of a laser beam welded Al-Cu-Mg-Ag alloy (2139) have been investigated. Natural aging (T3 temper) and artificial aging (T8 temper) have been applied prior to welding. Corrosion testing has been performed by exposing the welded specimens to a salt spray medium for 720 h. Aging influences the corrosion behavior of laser welds. In the T3 temper, corrosion attack is in the form of pitting in the weld area, while in the T8 temper corrosion is in the form of pitting and intergranular corrosion in the base metal. In the latter case corrosion is attributed to the presence of grain boundary precipitates. Corrosion degrades the fatigue behavior of 2139 welds. The degradation is equal for both the T3 and T8 tempers and for the corrosion exposure selected in this study corresponds to a 52% reduction in fatigue limit. In both cases fatigue crack initiation is associated with corrosion pits, which act as stress raisers. In the T3 temper, the fatigue crack initiation site is at the weld metal/heat affected zone interface, while for the T8 temper the initiation site is at the base metal. Fatigue crack initiation in uncorroded 2139 welds occurs at the weld toe at the root side, the weld reinforcement playing a principal role as stress concentration site. The fatigue crack propagates through the partially melted zone and the weld metal in all cases. The findings in this paper present useful information for the selection of appropriate heat treatment conditions, to facilitate control of the corrosion behavior in aluminium welds, which is of great significance for their fatigue performance.
Laser welding is increasingly used for the fabrication of lightweight and cost-effective integral... more Laser welding is increasingly used for the fabrication of lightweight and cost-effective integral stiffened panels in modern civil aircraft. As these structures age in service, the issue of the effect of corrosion on their damage tolerance requires attention. In this work, laboratory data on the influence of salt fog corrosion on the fatigue behavior of cladded 6156 T4 aluminum alloy laser welded specimens are presented. The experimental investigation was performed on 6156 T4 laser butt welded sheets. Prior to fatigue testing the welded joints were exposed to laboratory salt fog corrosion exposure for 720 h. The results showed that the clad layer offers sufficient corrosion protection both on base metal and the weld. Fatigue testing was followed by standard metallographic analysis in order to identify fatigue crack initiation sites. Crack initiation is located in all welded samples near the weld reinforcement which induces a significant stress concentration. Localized corrosion attack of the clad layer, in the form of pitting corrosion, creates an additional stress concentration which accelerates crack initiation leading to shorter fatigue life relative to the uncorroded samples. The potency of small corrosion pits to act as stress concentration sites has been assessed analytically. The above results indicate that despite the general corrosion protection offered by the clad layer, the localized attack described above leads to inferior fatigue performance, a fact that should be taken under consideration in the design and maintenance of these structures.
This work aims to provide extensive experimental evidence that reinforce the fact that block over... more This work aims to provide extensive experimental evidence that reinforce the fact that block overloading can produce phenomena of either crack growth acceleration or retardation depending on its magnitude, duration and the fatigue damage stage characterising its onset. Compared to the majority of similar experimental works in the field, the investigation is based on the classification of identical overloading conditions
Fatigue <html_ent glyph="@amp;" ascii="&"/> Fracture of Engineering Materials and Structures, 2005
The present work aims to provide evidence of corrosion-induced hydrogen embrittlement of the airc... more The present work aims to provide evidence of corrosion-induced hydrogen embrittlement of the aircraft aluminium alloy 2024. An extensive experimental investigation involving metallographic and fractographic analyses as well as mechanical testing was performed. The corrosion exposure led to a moderate reduction in yield and ultimate tensile stress and a dramatic reduction in tensile ductility. Metallographic investigation of the specimens revealed a hydrogen-rich embrittled zone just below the corrosion layer. Furthermore, fractographic analyses showed an intergranular fracture at the specimen surface followed by a zone of quasi-cleavage fracture and further below an entirely ductile fracture. Mechanical removal of the corroded layers restored the yield and ultimate stress almost to their initial values but not the tensile ductility. The tensile ductility was restored to the level of the uncorroded material only after heat treatment at 495 • C. Measurement of hydrogen evolution with temperature showed that by heating the corroded alloy at 495 • C, the trapped hydrogen is released. c 2005 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 28, 565-574 565
The fatigue crack growth behavior under constant amplitude and under single overload of 2024 alum... more The fatigue crack growth behavior under constant amplitude and under single overload of 2024 aluminum alloy in sheet and plate product form has been investigated. Constant amplitude fatigue crack growth tests showed superior crack growth resistance of the plate attributed to a pronounced roughness induced crack closure as a result of the coarse and elongated grain structure. Crack growth tests with single overload showed that the retardation effect caused by the overload is not primarily influenced by roughness crack closure at the crack path. In this case, the sheet material with lower yield strength revealed a higher retardation effect than the plate material. The observed crack growth behavior has been simulated with the LTSM-F model, which accounts for retardation of crack growth after an overload due to material strain hardening at the crack front. Dissimilar strain hardening at the crack tip due to different yield strength for the sheet and plate has been considered by means of strength gradients inside the overload plastic zone. The analytical results confirmed the observed material crack growth trends.
... Kermanidis a , R. Akid b , CA Rodopoulos b and Sp.G. Pantelakis a , Corresponding Author Cont... more ... Kermanidis a , R. Akid b , CA Rodopoulos b and Sp.G. Pantelakis a , Corresponding Author Contact Information , E-mail The Corresponding Author. ... The 0.01 h mark was used to facilitate the use of the logarithmic scale and represents zero time exposure with values for the ...
Uploads
Papers by A. Kermanidis