Zenodo (CERN European Organization for Nuclear Research), Jul 10, 2022
In the last decades, many researchers are investigating how robotic solutions may be adopted to a... more In the last decades, many researchers are investigating how robotic solutions may be adopted to address the increasing need for home and personal assistance aggravated by current global challenges, e.g. population ageing and pandemic emergency. In this direction, the researchers at Politecnico di Torino, together with the colleagues from Edison S.p.A., developed the Marvin project which aims at designing a useful mobile robot for the domestic environment. In this work, the main features of the Marvin prototype and a first qualitative experimental validation are presented.
Robot assistants are emerging as high-tech solutions to support people in everyday life. Followin... more Robot assistants are emerging as high-tech solutions to support people in everyday life. Following and assisting the user in the domestic environment requires flexible mobility to safely move in cluttered spaces. We introduce a new approach to person following for assistance and monitoring. Our methodology exploits an omnidirectional robotic platform to detach the computation of linear and angular velocities and navigate within the domestic environment without losing track of the assisted person. While linear velocities are managed by a conventional Dynamic Window Approach (DWA) local planner, we trained a Deep Reinforcement Learning (DRL) agent to predict optimized angular velocities commands and maintain the orientation of the robot towards the user. We evaluate our navigation system on a real omnidirectional platform in various indoor scenarios, demonstrating the competitive advantage of our solution compared to a standard differential steering following.
Learning agents can optimize standard autonomous navigation improving flexibility, efficiency, an... more Learning agents can optimize standard autonomous navigation improving flexibility, efficiency, and computational cost of the system by adopting a wide variety of approaches. This work introduces the PIC4rl-gym, a fundamental modular framework to enhance navigation and learning research by mixing ROS2 and Gazebo, the standard tools of the robotics community, with Deep Reinforcement Learning (DRL). The paper describes the whole structure of the PIC4rl-gym, which fully integrates DRL agent's training and testing in several indoor and outdoor navigation scenarios and tasks. A modular approach is adopted to easily customize the simulation by selecting new platforms, sensors, or models. We demonstrate the potential of our novel gym by benchmarking the resulting policies, trained for different navigation tasks, with a complete set of metrics.
Robot assistants and service robots are rapidly spreading out as cutting-edge automation solution... more Robot assistants and service robots are rapidly spreading out as cutting-edge automation solutions to support people in their everyday life in workplaces, health centers, and domestic environments. Moreover, the COVID-19 pandemic drastically increased the need for service technology to help medical personnel in critical conditions in hospitals and domestic scenarios. The first requirement for an assistive robot is to navigate and follow the user in dynamic environments in complete autonomy. However, these advanced multitask behaviors require flexible mobility of the platform to accurately avoid obstacles in cluttered spaces while tracking the user. This paper presents a novel human-centered navigation system that successfully combines a real-time visual perception system with the mobility advantages provided by an omnidirectional robotic platform to precisely adjust the robot orientation and monitor a person while navigating. Our extensive experimentation conducted in a representati...
Population aging and pandemics have been shown to cause the isolation of elderly people in their ... more Population aging and pandemics have been shown to cause the isolation of elderly people in their houses, generating the need for a reliable assistive figure. Robotic assistants are the new frontier of innovation for domestic welfare, and elderly monitoring is one of the services a robot can handle for collective well-being. Despite these emerging needs, in the actual landscape of robotic assistants, there are no platforms that successfully combine reliable mobility in cluttered domestic spaces with lightweight and offline Artificial Intelligence (AI) solutions for perception and interaction. In this work, we present Marvin, a novel assistive robotic platform we developed with a modular layer-based architecture, merging a flexible mechanical design with cutting-edge AI for perception and vocal control. We focus the design of Marvin on three target service functions: monitoring of elderly and reduced-mobility subjects, remote presence and connectivity, and night assistance. Compared t...
Zenodo (CERN European Organization for Nuclear Research), Jul 10, 2022
In the last decades, many researchers are investigating how robotic solutions may be adopted to a... more In the last decades, many researchers are investigating how robotic solutions may be adopted to address the increasing need for home and personal assistance aggravated by current global challenges, e.g. population ageing and pandemic emergency. In this direction, the researchers at Politecnico di Torino, together with the colleagues from Edison S.p.A., developed the Marvin project which aims at designing a useful mobile robot for the domestic environment. In this work, the main features of the Marvin prototype and a first qualitative experimental validation are presented.
Robot assistants are emerging as high-tech solutions to support people in everyday life. Followin... more Robot assistants are emerging as high-tech solutions to support people in everyday life. Following and assisting the user in the domestic environment requires flexible mobility to safely move in cluttered spaces. We introduce a new approach to person following for assistance and monitoring. Our methodology exploits an omnidirectional robotic platform to detach the computation of linear and angular velocities and navigate within the domestic environment without losing track of the assisted person. While linear velocities are managed by a conventional Dynamic Window Approach (DWA) local planner, we trained a Deep Reinforcement Learning (DRL) agent to predict optimized angular velocities commands and maintain the orientation of the robot towards the user. We evaluate our navigation system on a real omnidirectional platform in various indoor scenarios, demonstrating the competitive advantage of our solution compared to a standard differential steering following.
Learning agents can optimize standard autonomous navigation improving flexibility, efficiency, an... more Learning agents can optimize standard autonomous navigation improving flexibility, efficiency, and computational cost of the system by adopting a wide variety of approaches. This work introduces the PIC4rl-gym, a fundamental modular framework to enhance navigation and learning research by mixing ROS2 and Gazebo, the standard tools of the robotics community, with Deep Reinforcement Learning (DRL). The paper describes the whole structure of the PIC4rl-gym, which fully integrates DRL agent's training and testing in several indoor and outdoor navigation scenarios and tasks. A modular approach is adopted to easily customize the simulation by selecting new platforms, sensors, or models. We demonstrate the potential of our novel gym by benchmarking the resulting policies, trained for different navigation tasks, with a complete set of metrics.
Robot assistants and service robots are rapidly spreading out as cutting-edge automation solution... more Robot assistants and service robots are rapidly spreading out as cutting-edge automation solutions to support people in their everyday life in workplaces, health centers, and domestic environments. Moreover, the COVID-19 pandemic drastically increased the need for service technology to help medical personnel in critical conditions in hospitals and domestic scenarios. The first requirement for an assistive robot is to navigate and follow the user in dynamic environments in complete autonomy. However, these advanced multitask behaviors require flexible mobility of the platform to accurately avoid obstacles in cluttered spaces while tracking the user. This paper presents a novel human-centered navigation system that successfully combines a real-time visual perception system with the mobility advantages provided by an omnidirectional robotic platform to precisely adjust the robot orientation and monitor a person while navigating. Our extensive experimentation conducted in a representati...
Population aging and pandemics have been shown to cause the isolation of elderly people in their ... more Population aging and pandemics have been shown to cause the isolation of elderly people in their houses, generating the need for a reliable assistive figure. Robotic assistants are the new frontier of innovation for domestic welfare, and elderly monitoring is one of the services a robot can handle for collective well-being. Despite these emerging needs, in the actual landscape of robotic assistants, there are no platforms that successfully combine reliable mobility in cluttered domestic spaces with lightweight and offline Artificial Intelligence (AI) solutions for perception and interaction. In this work, we present Marvin, a novel assistive robotic platform we developed with a modular layer-based architecture, merging a flexible mechanical design with cutting-edge AI for perception and vocal control. We focus the design of Marvin on three target service functions: monitoring of elderly and reduced-mobility subjects, remote presence and connectivity, and night assistance. Compared t...
Uploads
Papers by Andrea Eirale