[Website] [arXiv] [Hugging Face]
conda create -n motion_deblur python=3.9
conda activate motion_deblur
# cuda-11.8 + torch-2.2.2
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txtTo run inference with our provided weights, first download weights into folder pretrained as shown from Hugging Face.
pretrained/
├── bair
│ ├── ema.pt
│ └── vqgan.ckpt
└── clev
├── ema.pt
└── vqgan.ckpt
For BAIR datasets,
python sample_motion_deblur.py configs/bair/deblur.py --ckpt-path pretrained/bair/ema.ptFor CLEVRER datasets,
python sample_motion_deblur.py configs/clev/deblur.py --ckpt-path pretrained/clev/ema.pt- DiT: Scalable Diffusion Models with Transformers.
- DPS: Diffusion Posterior Sampling for General Noisy Inverse Problems.
- Open-Sora: Democratizing Efficient Video Production for All.
- VQGAN: Taming Transformers for High-Resolution Image Synthesis.
@INPROCEEDINGS{11084505,
author={Pang, Wang and Zhan, Zhihao and Zhu, Xiang and Bai, Yechao},
booktitle={2025 IEEE International Conference on Image Processing (ICIP)},
title={Image Motion Blur Removal In The Temporal Dimension With Video Diffusion Models},
year={2025},
volume={},
number={},
pages={325-330},
keywords={Deblurring;Visualization;Technological innovation;Dynamics;Estimation;Training data;Transformer cores;Diffusion models;Transformers;Kernel;Motion deblurring;video diffusion model;diffusion transformer},
doi={10.1109/ICIP55913.2025.11084505}}

